Skip to main content
Log in

Synthesis of Gold Nanoparticles from Aqueous Solutions of Hydrochloroauric Acid under Multipulse Femtosecond Irradiation

  • INTERACTION OF LASER RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The main modes of synthesis of gold nanoparticles in aqueous solutions of hydrochloroauric acid under multipulse (3 × 106) femtosecond laser irradiation have been studied. UV–Vis spectroscopy, dynamic light scattering, and transmission electron microscopy (TEM) showed that there are two types of nanoparticles dominating in the investigated range of laser-pulse energies W = 1.6–200 µJ: ultrasmall (~1–5 nm) and plasmonic (~5–50 nm) nanoparticles. The particle size is found to be determined by two threshold pulse energies. The first corresponds to the development of avalanche water ionization, which initiates reduction of [AuCl4] ions to neutral atoms, formation of nuclei for nanoparticles, and their subsequent growth. The second threshold is determined by the avalanche-plasma heating, which leads to an explosive rise in the liquid temperature with overheating, melting, and fragmentation of previously formed gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. G. John, V. K. Meader, and K. M. Tibbetts, “Au nanoparticle synthesis via femtosecond laser-induced photochemical reduction of [AuCl4],” in Photochemistry and Photophysics – Fundamentals to Applications, Ed. by S. Saha (IntechOpen, 2018), pp. 137–159. https://doi.org/10.5772/intechopen.75075

  2. M. Das, K. H. Shim, S. S. A. An, and D. K. Yi, “Review on gold nanoparticles and their applications,” Toxicol. Environ. Health Sci. 3 (4), 193–205 (2011). https://doi.org/10.1007/s13530-011-0109-y

    Article  Google Scholar 

  3. V. V. Arkhipova, Candidate’s Dissertation in Chemistry (Lomonosov Moscow State Univ., Moscow, 2015).

  4. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  5. L. A. Dykman and N. G. Khlebtsov, “Gold nanoparticles in biology and medicine: Recent advances and prospects,” Acta Nat. 3 (2), 34–35 (2011). https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3347577/

    Article  Google Scholar 

  6. T. Okamoto, T. Nakamura, K. Sakota, and T. Yatsuhashi, “Synthesis of single-nanometer-sized gold nanoparticles in liquid–liquid dispersion system by femtosecond laser irradiation,” Langmuir. 35 (37), 12123–12129 (2019). https://doi.org/10.1021/acs.langmuir.9b01854

    Article  Google Scholar 

  7. D. R. Nurmukhametov, A. A. Zvekov, A. S. Zverev, A. N. Eremenko, D. M. Russakov, and B. P. Aduev, “Observation of surface plasmon resonance of gold nanoparticles in energy-related material: Pentaerythritol tetranitrate,” Quantum Electron. 47 (7), 647–650 (2017). https://doi.org/10.1070/QEL16329

    Article  ADS  Google Scholar 

  8. A. D. Krainov, P. D. Agrba, E. A. Sergeeva, S. V. Zabotnov, and M. Yu. Kirillin, “Study of contrasting properties of nanoparticles for optical diffuse spectroscopy problems,” Quantum Electron. 44 (8), 757–762 (2014). https://doi.org/10.1070/QE2014v044n08ABEH015494

    Article  ADS  Google Scholar 

  9. A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Nanoparticle formation during laser ablation of solids in liquids,” Phys. Wave Phenom. 15 (4), 218–240 (2007). https://doi.org/10.3103/S1541308X07040024

    Article  ADS  Google Scholar 

  10. A. V. Simakin, I. V. Baimler, V. V. Smirnova, O. V. Uvarova, V. A. Kozlov, and S. V. Gudkov, “Evolution of the size distribution of gold nanoparticles under laser irradiation,” Phys. Wave Phenom. 29 (2), 102–107 (2021). https://doi.org/10.3103/S1541308X21020126

    Article  ADS  Google Scholar 

  11. C. J. Rodrigues, J. A. Bobb, M. G. John, S. P. Fisenko, M. S. El-Shall, and K. M. Tibbetts, “Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl4],” Phys. Chem. Chem. Phys. 20 (45), 28465–28475 (2018). https://doi.org/10.1039/C8CP05774E

    Article  Google Scholar 

  12. T. Nakamura, Y. Herbani, D. Ursescu, R. Banici, R. V. Dabu, and S. Sato, “Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution,” AIP Adv. 3 (8), 082101 (2013). https://doi.org/10.1063/1.4817827

    Article  ADS  Google Scholar 

  13. T. Nakamura, Y. Mochidzuki, and S. Sato, “Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution,” J. Mater. Res. 23 (4), 968–974 (2008). https://doi.org/10.1557/jmr.2008.0115

    Article  ADS  Google Scholar 

  14. H. F. P. Barbosa, M. G. Neumanna, and C. C. S. Cavalheiro, “Photochemical synthesis of gold nanoparticles by irradiation of gold chloride with the 2nd harmonic of a Nd:YAG laser,” J. Braz. Chem. Soc. 30 (4), 813–818 (2019). https://doi.org/10.21577/0103-5053.20180213

    Article  Google Scholar 

  15. K. M. Tibbetts, B. Tangeysh, J. H. Odhner, and R. J. Levis, “Elucidating strong field photochemical reduction mechanisms of aqueous [AuCl4]: Kinetics of multiphoton photolysis and radical-mediated reduction,” J. Phys. Chem. A. 120 (20), 3562–3569 (2016). https://doi.org/10.1021/acs.jpca.6b03163

    Article  Google Scholar 

  16. V. Kumar and S. Ganesan, “Preparation and characterization of gold nanoparticles with different capping agents,” Int. J. Green Nanotechnol. 3 (1), 47–55 (2011). https://doi.org/10.1080/19430892.2011.574538

    Article  Google Scholar 

  17. Muttaqin, T. Nakamura, and S. Sato, “Synthesis of gold nanoparticle colloids by highly intense laser irradiation of aqueous solution by flow system,” Appl. Phys. A. 120, 881–888 (2015). https://doi.org/10.1007/s00339-015-9314-x

    Article  ADS  Google Scholar 

  18. N. Nakashima, K. Yamanaka, M. Saeki, H. Ohba, S. Taniguchi, and T. Yatsuhashi, “Metal ion reductions by femtosecond laser pulses with micro-Joule energy and their efficiencies,” J. Photochem. Photobiol., A. 319320, 70–77 (2016). https://doi.org/10.1016/j.jphotochem.2015.12.021

  19. B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanotriangle formation through strong-field laser processing of aqueous KAuCl4 and postirradiation reduction by hydrogen peroxide,” Langmuir. 33 (1), 243–252 (2017). https://doi.org/10.1021/acs.langmuir.6b03812

    Article  Google Scholar 

  20. V. V. Kononenko, K. K. Ashikkalieva, N. R. Arutyunyan, A. M. Romshin, T. V. Kononenko, and V. I. Konov, Femtosecond laser-produced plasma driven nanoparticle formation in gold aqueous solution, J. Photochem. Photobiol., A: Chemistry, 426, 113709 (2022).https://doi.org/10.1016/j.jphotochem.2021.113709

  21. N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction,” Anal. Chem. 80 (17), 6620–6625 (2008). https://doi.org/10.1021/ac800834n

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Ashikkalieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashikkalieva, K.K., Kononenko, V.V., Vasil’ev, A.L. et al. Synthesis of Gold Nanoparticles from Aqueous Solutions of Hydrochloroauric Acid under Multipulse Femtosecond Irradiation. Phys. Wave Phen. 30, 17–24 (2022). https://doi.org/10.3103/S1541308X22010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22010046

Keywords:

Navigation