Skip to main content
Log in

Derivation and experimental analysis of the relation between temperature and stress

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The relation between stress and temperature in polymer composite materials was derived based on the energy conservation law. For the qualitative experiment, glass-fiber-reinforced plastic specimens were heat treated to produce surface strain, thereby completely releasing the stress in the material. The presence of surface distortion qualitatively confirmed the relation between stress and temperature, thereby confirming the underlying physical mechanism of the relation. A case study was undertaken to measure the surface strain for quantitative confirmation of the relation between temperature and stress. This study established the equation based on physical parameters for the quantitative measurement of the relation between the temperature and the stress and strain. Despite the experimental error, objective and meaningful experimental results can be obtained using our measurement approach for a variety of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Gay, S.V. Hoa, S.W. Tsai, Composite Materials: Design and Applications (CRC Press, Boca Raton, 2002), pp. 80–84

    Book  Google Scholar 

  2. M.A. dos Santos, Bernardes. Int. J. Heat Mass Transf. 73, 354–357 (2014)

    Article  Google Scholar 

  3. H. An, S. Takada, T. Sannomiya, S. Muraishi, J. Shi, Y. Nakamura, Appl. Phys. A 113, 31–35 (2013)

    Article  ADS  Google Scholar 

  4. H.Y. Chao, The Research of Exciting Print-through Phenomenon of GFRP Composite Material by Heat Treatment. Master’s thesis, Institute of Engineering Science and Ocean Engineering, National Taiwan University (2012)

  5. Y.H. Tan, The Study of Exciting Print-through Phenomenon on the Surface of GFRP Materials by Using Piezoelectric Vibration. Master’s Thesis, Institute of Engineering Science and Ocean Engineering, National Taiwan University (2011)

  6. C.F. Liu, The Study of Exciting Print-through Phenomenon on the Surface of FRP Materials with Ultrasonic Wave. Master’s Thesis, Institute of Engineering Science and Ocean Engineering, National Taiwan University (2010)

  7. M.A. Nicolet, M. Ryser, V. Romano, Appl. Phys. A 118, 1153–1160 (2015)

    Article  ADS  Google Scholar 

  8. W. Weglewski, M. Basista, M. Chmielewski, K. Pietrzak, Compos. Part B Eng. 43, 255–264 (2012)

    Article  Google Scholar 

  9. W. Paszkowicz, R. Minikayev, P. Piszora, D. Trots, M. Knapp, T. Wojciechowski, R. Bacewicz, Appl. Phys. A 116, 767–780 (2014)

    Article  ADS  Google Scholar 

  10. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569–580 (2006)

    Article  ADS  Google Scholar 

  11. P. O’Neil, Advanced Engineering Mathematics, 5th edn. (Thomson Brooks/Cole, Pacific Grove, 2003), pp. 247–262

    Google Scholar 

  12. M.L. Herring, J.I. Mardel, B.L. Fox, J. Mater. Process. Technol. 210, 926–940 (2010)

    Article  Google Scholar 

  13. L. Khoun, P. Hubert, Polym. Compos. 31, 1603–1610 (2010)

    Article  Google Scholar 

  14. N. Araki, A. Makino, T. Ishiguro, J. Mihara, Int. J. Thermophys. 13, 515–538 (1992)

    Article  ADS  Google Scholar 

  15. A. Markov, B. Fiedler, K. Schulte, Compos. Part A Appl. Sci. Manuf. 37, 1390–1395 (2006)

    Article  Google Scholar 

  16. Y.M. Kuo, H.J. Lin, Y.H. Lee, W.M. Lai, J. Reinf. Plast. Compos. 30, 1989–2001 (2011)

    Article  ADS  MATH  Google Scholar 

  17. J. Koyanagi, Y. Arao, S. Utsunomiya, S. Takeda, H. Kawada, J. Solid Mech. Mater. Eng. 4, 1540–1549 (2010)

    Article  MATH  Google Scholar 

  18. H.J. Lin, C.I. Liao, R.L. Jiang, Y.M. Kuo, J. Compos. Mater. 41, 3055–3078 (2007)

    Article  ADS  Google Scholar 

  19. H.J. Lin, C.I. Liao, R.L. Jiang, J. Reinf, Plast. Compos. 26, 377–389 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsien-Chang Shih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, HC. Derivation and experimental analysis of the relation between temperature and stress. Appl. Phys. A 120, 1091–1103 (2015). https://doi.org/10.1007/s00339-015-9284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9284-z

Keywords

Navigation