Skip to main content
Log in

Solubility enhancement and epitaxial core–shell structure of Si-doped ZnO via a specific pulsed laser ablation route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Wurtzite (W)-type ZnO nanocondensates and particulates with enhanced solid solubility of Si4+ and special defect nanostructures were synthesized via pulsed laser ablation of Zn2SiO4/ZnO composite target under a relatively high peak power density of 1.4 × 1012 W/cm2 in high vacuum (3.5 × 10−5 torr). The nanocondensates were either dispersed in an amorphous Zn–O–Si phase as a composite sphere up to submicrons in size or coalesced by the {\(10\overline{1} 1\)}, {\(11\overline{2} 3\)}, and {\(10\overline{1} 0\)} facets as unity and twin. The particulates tended to have an epitaxial 1D commensurate 2× (0002) superstructure (i.e., 1 × 1 × 2 superstructure in 3D) at the edge with enhanced Si4+ doping and the amorphous phase coverage. Such W-ZnO nanocondensates and particulates have modified Raman bands and photoluminescence due to internal compressive stress and overdoped Si4+ in substitutional and/or interstitial sites coupled with charge/volume compensating defects for potential optoelectronic and optocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436, 91–94 (2005)

    Article  ADS  Google Scholar 

  2. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776–1779 (2008)

    Article  ADS  Google Scholar 

  3. D. Turnbull, J. Appl. Phys. 21, 1022 (1950)

    Article  ADS  Google Scholar 

  4. F.V. Mikulec, M. Kuno, M. Bennati, D.A. Hall, R.G. Griffin, M.G. Bawendi, J. Am. Chem. Soc. 122, 2532–2540 (2000)

    Article  Google Scholar 

  5. G.M. Dalpian, J.R. Chelikowsky, Phys. Rev. Lett. 96, 226802 (2006)

    Article  ADS  Google Scholar 

  6. J.D. Bryan, D.R. Gamelin, Prog. Inorg. Chem. 54, 47–126 (2005)

    Article  Google Scholar 

  7. D. Son, S.M. Hughes, Y. Yin, A.P. Alivisatos, Science 306, 1009–1012 (2004)

    Article  ADS  Google Scholar 

  8. T. Mokari, A. Aharoni, I. Popov, U. Banin, Angew. Chem. Int. Ed. 45, 8001–8005 (2006)

    Article  Google Scholar 

  9. R.D. Robinson, B. Sadtler, D.O. Demchenko, C.K. Erdonmez, L.-W. Wang, A.P. Alivisatos, Science 317, 355–358 (2007)

    Article  ADS  Google Scholar 

  10. C.N. Huang, S.Y. Chen, P. Shen, J. Phys. Chem. C 111, 3322–3327 (2007)

    Article  Google Scholar 

  11. C.H. Lin, C.N. Huang, S.Y. Chen, Y. Zheng, P. Shen, J. Phys. Chem. C 113, 19112–19118 (2009)

    Article  Google Scholar 

  12. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)

    Article  ADS  Google Scholar 

  13. S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80, 1529 (2002)

    Article  ADS  Google Scholar 

  14. P. Bhattacharya, R.R. Das, R.S. Katiyar, Appl. Phys. Lett. 83, 2010 (2003)

    Article  ADS  Google Scholar 

  15. M. Kunisu, I. Tanaka, T. Yamamoto, T. Suga, T. Mizoguchi, J. Phys. Condens. Matter 16, 3801 (2004)

    Article  ADS  Google Scholar 

  16. J.T. Luo, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, Appl. Surf. Sci. 258, 2177 (2012)

    Article  ADS  Google Scholar 

  17. A.K. Das, P. Misra, L.M. Kukreja, J. Phys. D Appl. Phys. 42, 165405 (2009)

    Article  ADS  Google Scholar 

  18. B.C. Lin, P. Shen, S.Y. Chen, J. Nanoparticle Res. 16, 2444 (2014)

    Article  Google Scholar 

  19. B.H. Huang, P. Shen, S.Y. Chen, J. Eur. Ceram. Soc. 28, 2545–2555 (2008)

    Article  Google Scholar 

  20. B.H. Huang, S.Y. Chen, P. Shen, J. Phys. Chem. C 112, 1064–1071 (2008)

    Article  Google Scholar 

  21. A. Putnis, Introduction to Mineral Science (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  22. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Fang, Appl. Phys. Lett. 78, 407 (2001)

    Article  ADS  Google Scholar 

  23. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Phys. Rev. B 57, 12151 (1998)

    Article  ADS  Google Scholar 

  24. T. Minami, H. Nanto, S. Takata, J. Lumin. 24, 63–66 (1981)

    Article  Google Scholar 

  25. C. Klingshirn, Phys. Status Solidi B 244(9), 3027–3073 (2007)

    Article  ADS  Google Scholar 

  26. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  27. F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.-C. Chervin, A. Polian, Phys. Rev. B 65, 092101 (2002)

    Article  ADS  Google Scholar 

  28. X. Yan, Y. Gu, X. Zhang, Y. Huang, J. Qi, Y. Zhang, T. Fujita, M. Chen, J. Phys. Chem. C 113, 1164–1167 (2009)

    Article  ADS  Google Scholar 

  29. H. Mori, H. Yasuda, Mater. Sci. Eng. A 312, 99–103 (2001)

    Article  Google Scholar 

  30. J.G. Lee, H. Mori, H. Yasuda, Phys. Rev. B 65, 132106 (2002)

    Article  ADS  Google Scholar 

  31. J.G. Lee, H. Mori, J. Vac. Sci. Technol. A 21, 32 (2003)

    Article  ADS  Google Scholar 

  32. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Book  Google Scholar 

  33. B. Meyer, D. Marx, Phys. Rev. B 67, 035403 (2003)

    Article  ADS  Google Scholar 

  34. S.Y. Chen, P. Shen, Phys. Rev. Lett. 89, 096106 (2002)

    Article  ADS  Google Scholar 

  35. S.Y. Chen, P. Shen, Jpn. J. Appl. Phys. 43, 1519 (2004)

    Article  ADS  Google Scholar 

  36. C.H. Chen, C.N. Huang, S.Y. Chen, P. Shen, J. Nanoparticle Res. 13, 3683–3692 (2011)

    Article  Google Scholar 

  37. J.Z. Jiang, J.S. Olsen, L. Gerward, D. Frost, D. Rubie, J. Peyronneau, J. Europhys. Lett. 50, 48–53 (2000)

    Article  ADS  Google Scholar 

  38. S.V. Stishov, S.V. Popova, Geokhimoya 10, 837–839 (1961) (Eng. Geochem. Int’l, 923–926)

  39. L.G. Liu, W.A. Bassett, Elements, Oxides, and Silicates: High-Pressure Phases with Implications for the Earth’s Interior (Oxford University Press, Oxford, 1986)

    Google Scholar 

  40. F.A. Kröger, H. Vink, J. Solid State Phys. 3, 307–435 (1956)

    Google Scholar 

  41. R.D. Shannon, Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  42. M. Kong, W. Zhao, Y. Wu, B. Huang, G. Li, J. Coat. Technol. Res. 9, 177–182 (2012)

    Article  Google Scholar 

  43. B.C. Lin, P. Shen, S.Y. Chen, J. Phys. Chem. C 115, 5003–5010 (2011)

    Article  Google Scholar 

  44. E. Burstein, Phys. Rev. 93, 632 (1953)

    Article  ADS  Google Scholar 

  45. P.E. Schmid, Phys. Rev. B 23, 5531 (1981)

    Article  ADS  Google Scholar 

  46. B.J. Pierce, R.L. Hengehold, J. Appl. Phys. 47, 644 (1976)

    Article  ADS  Google Scholar 

  47. M. Bouguerra, M. Samah, M.A. Belkhir, A. Chergui, L. Gerbous, G. Nouet, D. Chateigner, R. Madelon, Chem. Phys. Lett. 425, 77–81 (2006)

    Article  ADS  Google Scholar 

  48. T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, N. Ohno, J. Lumin. 112, 196 (2005)

    Article  Google Scholar 

  49. H. Wei, Y. Wu, L.C. Hu, Mater. Lett. 59, 271 (2005)

    Article  Google Scholar 

  50. M. Shim, P. Guyot-Sionnest, J. Am. Chem. Soc. 123, 11651 (2001)

    Article  Google Scholar 

  51. D. Hreniak, M. Jasiorski, K. Maruszewski, L. Kepinski, L. Krajczyk, J. Misiewicz, W. Strek, J. Non Cryst. Solids 298, 146 (2002)

    Article  ADS  Google Scholar 

  52. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000)

    Article  ADS  Google Scholar 

  53. S.M. Abrarov, Sh.U. Yuldashev, T.W. Kim, Y.H. Kwon, T.W. Kang, Opt. Commun. 259, 378–384 (2006)

    Article  ADS  Google Scholar 

  54. F. Decremps, J. Zhang, R.C. Liebermann, Europhys. Lett. 51, 268–274 (2000)

    Article  ADS  Google Scholar 

  55. S.Y. Chen, P. Shen, J. Jiang, J. Chem. Phys. 121, 11309–11313 (2004)

    Article  ADS  Google Scholar 

  56. B. Cheng, Q. Li, M. Yao, R. Liu, D. Li, B. Zou, T. Cui, J. Liu, Z. Chen, Z. Zhao, B. Yang, B. Liu, J. Appl. Phys. 113, 054314 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank L. J. Wang and S. Y. Yao for technical assistance on FETEM and Cs-corrected STEM, respectively. Supported by Ministry of Science and Technology, Taiwan, ROC, under contract MOST 103-2221-E-218-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ning Huang.

Appendices

Appendix 1

See Fig. 9.

Fig. 9
figure 9

Phase diagram for the system SiO2–ZnO

Appendix 2

See Fig. 10.

Fig. 10
figure 10

XRD trace of the target produced by reactive sintering of SiO2 and ZnO powders on the ratio of 22.5 and 77.5 mol% at 1400 °C for 12 h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CN., Chen, SY., Zheng, Y. et al. Solubility enhancement and epitaxial core–shell structure of Si-doped ZnO via a specific pulsed laser ablation route. Appl. Phys. A 120, 1033–1045 (2015). https://doi.org/10.1007/s00339-015-9273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9273-2

Keywords

Navigation