Skip to main content
Log in

Electrical properties of palladium-doped CaCu3Ti4O12 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of doping palladium (Pd) at the Cu site of CaCu3Ti4O12 powders (CCPTO) synthesized by sol–gel technique on electrical properties was studied. XRD analysis revealed the formation of CCTO and CCPTO ceramics with some minor quantities of impurities. SEM micrographs revealed that the grain size decreased with Pd doping. TEM micrographs of CCPTO powder showed the formation of irregular-shaped particles of ~40 nm. The dielectric constant and dielectric loss showed a significant enhancement with Pd doping. A significant decrease in grain-boundary resistance with Pd doping was ascertained by impedance spectroscopy study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  2. S. Kwon, C.C. Huang, E.A. Patterson, D.P. Cann, E.F. Alberta, S. Kwon, W.S. Hackenberger, The effect of Cr2O3, Nb2O5 and ZrO2 doping on the dielectric properties of CaCu3Ti4O12. Mater. Lett 62, 633 (2008)

    Article  Google Scholar 

  3. C.C. Home, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  4. S.Y. Chung, I.D. Kim, S.J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774 (2004)

    Article  ADS  Google Scholar 

  5. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002)

    Article  ADS  Google Scholar 

  6. M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Humidity sensitive properties of pure and Mg-doped CaCu3Ti4O12. Sens. Actuators B Chem. 147, 447 (2010)

    Article  Google Scholar 

  7. R.N.P. Choudhary, U. Bhunia, Structural, dielectric and electrical properties of ACu3Ti4O12 (A = Ca, Sr and Ba). J. Mater. Sci. 37, 5177 (2002)

    Article  ADS  Google Scholar 

  8. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217 (2000)

    Article  ADS  Google Scholar 

  9. L. Ni, X.M. Chen, Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 91, 122905 (2007)

    Article  ADS  MATH  Google Scholar 

  10. T.T. Fang, C.P. Liu, Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17, 5167 (2005)

    Article  MATH  Google Scholar 

  11. T.T. Fang, L.T. Mei, Evidence of Cu deficiency: a key point for the understanding of the mystery of the giant dielectric constant in CaCu3Ti4O12. J. Am. Ceram. Soc. 90, 638 (2007)

    Article  Google Scholar 

  12. J.C. Zheng, A.I. Frenkel, L. Wu, J. Hanson, W. Ku, E.S. Bozin, S.J.L. Billinge, Y. Zhu, Nanoscale disorder and local electronic properties of CaCu3Ti4O12: an integrated study of electron and x-ray diffraction, x-ray absorption fine structure and first principles calculations. Phys. Rev. B 81, 144203 (2010)

    Article  ADS  Google Scholar 

  13. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramirez, W.C. Ribeiro, E. Longo, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42, 55404 (2009)

    Article  ADS  Google Scholar 

  14. P. Lunkenheimer, S. Krohns, R. Fichtl, S.G. Ebbinghaus, A. Reller, A. Loidl, Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Top 180, 61 (2010)

    Article  Google Scholar 

  15. M.J. Pan, B.A. Bender, A bimodal grain size model for predicting the dielectric constant of calcium copper titanate ceramics. J. Am. Ceram. Soc. 88, 2611 (2005)

    Article  Google Scholar 

  16. L. Ni, X.M. Chen, X. Liu, R. Hou, Microstructure-dependent giant dielectric response in CaCu3Ti4O12 ceramics. Solid State Commun. 139, 45 (2006)

    Article  ADS  Google Scholar 

  17. M. Li, A. Feteira, D.C. Sinclair, A.R. West, Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88, 232903 (2006)

    Article  ADS  Google Scholar 

  18. T.B. Adams, D.C. Sinclair, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics, A.R. West. Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  19. J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Dielectric properties of Sm-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39, S149 (2013)

    Article  Google Scholar 

  20. J. Li, H. Lu, C. Lu, C. Huang, B. Fu, J. Cai, J.W. Sheng, Effects of rare-earth doping on dielectric properties of CaCu3Ti4O12 ceramics. Ferroelectrics 452, 42 (2013)

    Google Scholar 

  21. P. Thongbai, J. Boonlakhorn, B. Putasaeng, T. Yamwaong, S. Maensiri, Extremely enhanced nonlinear current–voltage properties of Tb doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 96(2), 379 (2013)

    Google Scholar 

  22. Z. Yang, Y. Zhang, K. Zhang, D. Yin, R. Xiong, J. Shi, Effect of grain-boundary behaviour on the dc electric conduction in Rb-doped CaCu3Ti4O12. J. Mater. Sci. Mater. Electron. 2013, 24 (1063)

    Google Scholar 

  23. P. Thongbai, K. Meeporn, T. Yamwaong, S. Maensiri, Extreme effects of Na doping on microstructure, giant dielectric response and dielectric relaxation behavior in CaCu3Ti4O12 ceramics. Mater. Lett. 106, 129 (2013)

    Article  Google Scholar 

  24. S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Selectivity of doping ions to effectively improve dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics. Ceram. Int. 39, 8133 (2013)

    Article  Google Scholar 

  25. A.K. Rai, J. Gim, E. Shin, H. Seo, V. Mathew, K.D. Mandal, O. Prakash, J.S. Lee, J. Kim, Effects of praseodymium substitution on electrical properties of CaCu3Ti4O12 ceramics. Ceram. Int. 40, 181 (2014)

    Article  Google Scholar 

  26. L.F. Xu, P.B. Qi, S.S. Chen, R.L. Wang, C.P. Yang, Dielectric properties of bismuth doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 177, 494 (2012)

    Article  Google Scholar 

  27. D. Xu, C. Zhang, X.N. Cheng, Y. Fan, T. Yang, H.M. Yuan, Dielectric properties of Zn-doped CCTO ceramics by sol–gel method. Adv. Mater. Res. 197, 302 (2011)

    Article  Google Scholar 

  28. J. Cai, Y.H. Lin, B. Cheng, C.W. Nan, J. He, Y. Wu, X. Chen, Dielectric and nonlinear electrical behaviour observed in Mn-doped CaCu3Ti4O12 ceramic. Appl. Phys. Lett. 91, 252905 (2007)

    Article  ADS  Google Scholar 

  29. W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped CaCu3Ti4O12. J. Mater. Sci. Technol. 26(8), 682 (2010)

    Article  Google Scholar 

  30. W.C. Ribeiro, R.G.C. Araujo, P.R. Bueno, The dielectric suppress and the control of semiconductor non-Ohmic feature of CaCu3Ti4O12 by means of tin doping. Appl. Phys. Lett. 98, 132906 (2011)

    Article  ADS  Google Scholar 

  31. A.K. Rai, N.K. Singh, S.K. Acharya, L. Singh, K.D. Mandal, Effects of tantalum substitution on microstructures and dielectric properties of calcium copper titanate (CaCu3Ti4O12) ceramics. Mater. Sci. Eng. B 177(14), 1213 (2012)

    Article  Google Scholar 

  32. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Enhancement of giant dielectric response in Ga-doped CaCu3Ti4O12 ceramics. Ceram. Int. 39(2), 1057 (2013)

    Article  Google Scholar 

  33. L. Zhang, Y. Wu, X. Guo, Z. Wang, Y. Zou, Influence of Zr doping on the dielectric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci Mater. Electron. 23(4), 865 (2012)

    Article  Google Scholar 

  34. M.J. Davis, P. Vullo, Electrical characterization of Pd doped CMAS–TiO2 glass ceramics. Int. J. Appl. Ceram. Sci. 5(3), 217 (2014)

    Google Scholar 

  35. H. Birey, Dielectric properties of aluminum oxide films. J. Appl. Phys. 49, 2898 (1978)

    Article  ADS  Google Scholar 

  36. J. Li, K. Cho, N. Wu, A. Ignatiev, Correlation between dielectric properties and sintering temperatures of polycrystalline CaCu3Ti4O12. IEEE Trans. Dielectr. Electr. Insul. 11, 534 (2004)

    Google Scholar 

  37. P. Jha, P. Arora, A.K. Ganguli, Polymeric citrate precursor route to the synthesis of the high dielectric constant oxide, CaCu3Ti4O12. Mater. Lett. 57, 2443 (2003)

    Article  Google Scholar 

  38. P.C. Joshi, S.B. Desu, Structural and electrical characteristics of rapid thermally processed ferroelectric Bi4Ti3O12 thin films prepared by metalorganic solution deposition technique. J. Appl. Phys. 80, 2349 (1996)

    Article  ADS  Google Scholar 

  39. L. Zhang, Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl. Phys. Lett. 87, 022907 (2005)

    Article  ADS  Google Scholar 

  40. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado- Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr K.Dasgupta (Director CGCRI-CSIR) and Dr A.Sen (Head, Sensor and Actuator Division) for publishing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrabanee Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Md Mursalin, S., Rana, P. et al. Electrical properties of palladium-doped CaCu3Ti4O12 ceramics. Appl. Phys. A 120, 1011–1021 (2015). https://doi.org/10.1007/s00339-015-9269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9269-y

Keywords

Navigation