Skip to main content
Log in

IPMC actuators based on metal–Nafion™ composite films prepared by thermal decomposition of noble metal complexes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and highly efficient compositing process was developed by synthesizing Pt or Pd nanoparticles embedded in polymers (Nafion™) with uniform distribution by in situ thermal decomposition of noble metal complexes. The homogenous mixtures of the metal complexes (trans-Pt(DMSO)(NH2CH2CH2OH)Cl2 or trans-Pd(DMSO)(H2NCH2CH2OH)Cl2) and Nafion™ dispersion went through a film casting process, and the metal ions in the Nafion™ were reduced to metal nanoparticles by the annealing process. The in situ compositing method avoids the use of excess metal sources and any external reducing agent/stabilizing agents, and leads to a uniform distribution of nanoparticles in the polymer matrixes. The films were characterized using optical microscopy and scanning electron microscopy. The actuation behavior in response to an AC electric field was investigated by bending displacements and blocking force measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Mallavarapu, D.J. Leo, Feedback control of the bending response of ionic polymer actuators. J. Intell. Mater. Syst. Struct. 12, 143–155 (2001)

    Article  Google Scholar 

  2. M. Shahinpoor, K.J. Kim, Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14, 197–214 (2005)

    Article  ADS  Google Scholar 

  3. C. Bonomo, L. Fortuna, P. Giannone, S. Graziani, A method to characterize the deformation of an IPMC sensing membrane. Sens. Actuators A Phys. 123–124, 146–154 (2005)

    Article  Google Scholar 

  4. J.S. Yun, K.S. Yang, N.J. Choi, H.K. Lee, S.E. Moon, D.H. Kim, Microvalves based on ionic polymer–metal composites for microfluidic application. J. Nanosci. Nanotechnol. 11, 5975–5979 (2011)

    Article  Google Scholar 

  5. J.Y. Jung, I.K. Oh, Novel nanocomposite actuator based on sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) polymer. J. Nanosci. Nanotechnol. 7, 3740–3743 (2007)

    Article  Google Scholar 

  6. N.J. Choi, H.K. Lee, S. Jung, S. Lee, K.H. Park, electroactive polymer actuator with high response speed through anisotropic surface roughening by plasma etching. J. Nanosci. Nanotechnol. 8, 5385–5388 (2008)

    Article  Google Scholar 

  7. H.K. Lee, N.J. Choi, S. Jung, K.H. Park, J. Kim, Ionic polymer–metal composites (IPMCs) containing Cu/Ni electrodes and ionic liquids for durability. Proc. SPIE 7362, 73620I (2009)

    Article  Google Scholar 

  8. V.K. Nguyen, Y. Yoo, A novel design and fabrication of multilayered ionic polymer–metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites. Sens. Actuators B Chem. 123, 183–190 (2007)

    Article  Google Scholar 

  9. J.W. Lee, Y.T. Yoo, The structure and performance of ionic polymer–metal composite actuators prepared via electroless plating process using various alcohols. Macromol. Symp. 249–250, 56–60 (2007)

    Article  Google Scholar 

  10. K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa, Polymer electrolyte actuator with gold electrodes. Proc. SPIE 3669, 64 (1999)

    Article  ADS  Google Scholar 

  11. M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Ionic polymer–metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review. Smart Mater. Struct. 7, R15–R30 (1998)

    Article  ADS  Google Scholar 

  12. K.J. Kim, M. Shahinpoor, Ionic polymer–metal composites: manufacturing techniques. Proc. SPIE 4695, 210 (2002)

    Article  ADS  Google Scholar 

  13. H. Tamagawa, F. Nogata, T. Watanabe, A. Abe, K. Yagasaki, J.Y. Jin, Influence of metal plating treatment on the electric response of Nafion. J. Mater. Sci. 38, 1039–1044 (2003)

    Article  ADS  Google Scholar 

  14. U. Johanson, U. Mäeorg, V. Sammelselg, D. Brandell, A. Punning, M. Kruusmaa, A. Aabloo, Electrode reactions in Cu–Pt coated ionic polymer actuators. Sens. Actuators B Chem. 131, 340–346 (2008)

    Article  Google Scholar 

  15. I.S. Park, S.M. Kim, K.J. Kim, Mechanical and thermal behavior of ionic polymer–metal composites: effects of electroded metals. Smart Mater. Struct. 16, 1090–1097 (2007)

    Article  ADS  Google Scholar 

  16. M. Shahinpoor, K.J. Kim, Ionic polymer–metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001)

    Article  ADS  Google Scholar 

  17. N.I. Dodoff, D. Kovala-Demertzi, M. Kubiakc, J. Kuduk-Jaworskac, A. Kochelc, G.A. Gornevaa, Dimethyl sulfoxide containing platinum(II) and palladium(II) chelate complexes of glyoxylic and pyruvic acid thiosemicarbazones. A new class of cytotoxic metal complexes. Z. Naturforsch. 61b, 1110–1122 (2006)

    Google Scholar 

  18. X.L. Wang, I.K. Oh, T.H. Cheng, Electro-active polymer actuators employing sulfonated poly(styrene-ran-ethylene) as ionic membranes. Polym. Int. 59, 305–312 (2010)

    Article  Google Scholar 

  19. Y. Wyser, C. Pelletier, J. Lange, Predicting and determining the bending stiffness of thin films and laminates. Packag. Technol. Sci. 14, 97–108 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Sun Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K.S., Lee, HK., Choi, NJ. et al. IPMC actuators based on metal–Nafion™ composite films prepared by thermal decomposition of noble metal complexes. Appl. Phys. A 120, 785–791 (2015). https://doi.org/10.1007/s00339-015-9256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9256-3

Keywords

Navigation