Skip to main content

Advertisement

Log in

Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly dispersed polypyrrole particles were decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composite, which obtained a folded surface, shows remarkable performance as the electrode material of supercapacitors. The specific capacitance reaches 564.1 F g−1 at a current density of 1 A g−1 and maintains 86.4 % after 1000 charging–discharging cycles at a current density of 20 A g−1, which indicates a good cycling stability. Furthermore, the prepared supercapacitor demonstrates an ultrahigh energy density of 50.13 Wh kg−1 at power density of 0.40 kW kg−1, and remains of 45.33 Wh kg−1 even at high power density of 8.00 kW kg−1, which demonstrate that the hybrid supercapacitor can be a promising energy storage system for fast and efficient energy storage in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.B. Sillars, S.I. Fletcher, M. Mirzaeian, P.J. Hall, Effect of activated carbon xerogel pore size on the capacitance performance of ionic liquid electrolytes. Energy Environ. Sci. 4, 695–706 (2011)

    Article  Google Scholar 

  2. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  3. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)

    Article  Google Scholar 

  4. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 32, 7472–7477 (2010)

    Article  Google Scholar 

  5. Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, Y. Lu, Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 19, 3420–3426 (2009)

    Article  Google Scholar 

  6. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)

    Article  Google Scholar 

  7. L.H. Bao, J.F. Zang, X.D. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 11, 1215–1220 (2011)

    Article  ADS  Google Scholar 

  8. Z. Chen, V. Augustyn, J. Wen, Y.W. Zhang, M.Q. Shen, B. Dunn, Y.F. Lu, High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791–795 (2011)

    Article  Google Scholar 

  9. O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, S.T. Nguyen, Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv. Mater. 22, 4759–4763 (2011)

    Article  Google Scholar 

  10. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  11. L. Yan, Y.B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012)

    Article  Google Scholar 

  12. X. Li, H. Wang, J.T. Robinson, T. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009)

    Article  Google Scholar 

  13. L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    Article  Google Scholar 

  14. Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009)

    Article  Google Scholar 

  15. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F.Y.C. Boey, Q. Yan, P. Chen, H. Zhang, In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846 (2009)

    Article  Google Scholar 

  16. H. Gómez, M.K. Ram, F. Alvi, P. Villalba, E. Stefanakos, A. Kumar, Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J. Power Sources 196, 4102–4108 (2011)

    Article  Google Scholar 

  17. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6, 307–312 (2010)

    Article  Google Scholar 

  18. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  19. C. Berger, Z.M. Song, X.B. Li, X.S. Wu, B. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  Google Scholar 

  20. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007)

    Article  ADS  Google Scholar 

  21. S.F. Pei, H.M. Cheng, Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50, 4239–4251 (2012)

    Article  Google Scholar 

  22. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  ADS  Google Scholar 

  23. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  ADS  Google Scholar 

  24. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of grapheme. Science 332, 1537–1541 (2011)

    Article  ADS  Google Scholar 

  25. J.H. Kim, A.K. Sharma, Y.S. Lee, Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater. Lett. 60, 1697–1701 (2006)

    Article  Google Scholar 

  26. R.K. Sharma, A.C. Rastogi, S.B. Desu, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta 53, 7690–7695 (2008)

    Article  Google Scholar 

  27. A.R. Liu, C. Li, H. Bai, G.Q. Shi, Electrochemical deposition of polypyrrole/sulfonated graphene composite films. J. Phys. Chem. C 114, 22783–22789 (2010)

    Article  Google Scholar 

  28. A. Ambrosi, A. Bonanni, M. Pumera, Electrochemistry of folded graphene edges. Nanoscale 3, 2256–2260 (2011)

    Article  ADS  Google Scholar 

  29. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  30. S. Shrestha, W.E. Mustain, Properties of nitrogen-functionalized ordered mesoporous carbon prepared using polypyrrole precursor. J. Electrochem. Soc. 157, B1665–B1672 (2010)

    Article  Google Scholar 

  31. F. Kapteijn, J.A. Moulijn, S. Matzner, H.P. Boehm, The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37, 1143–1150 (1999)

    Article  Google Scholar 

  32. Ramaprabhu S. Jaidev, Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J. Mater. Chem. 22, 18775–18783 (2012)

    Article  Google Scholar 

  33. Y.H. Wu, C.X. Guo, N. Li, L.L. Ji, Y.F. Tu, X.M. Yang, Three-dimensional interconnected nanocarbon hybrid prepared by one-pot synthesis method with polypyrrole-based nanotube and graphene and the application in high-performance capacitance. Electrochim. Acta 146, 386–394 (2014)

    Article  Google Scholar 

  34. W.H. Khoh, J.D. Hong, Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in a gel electrode. Colloid Surf. A 456, 26–34 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51272100 and 51273073) and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishan Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Zhou, X., Qian, T. et al. Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface. Appl. Phys. A 120, 693–698 (2015). https://doi.org/10.1007/s00339-015-9241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9241-x

Keywords

Navigation