Skip to main content

Advertisement

Log in

Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, charge transport in graphene/polypyrrole supercapacitor which is relatively unexplored so far, is investigated to understand the respective contributions of graphene and polypyrrole, particularly, in the charge transport and storage capacity to improve the device properties. It is seen that the role of graphene is to increase the surface area and the charge carriers are mainly stored in the polypyrrole-modified graphene sheet, while the transport occurs primarily through polypyrrole backbone via overlapping large polaron tunneling mechanism. Electrochemical supercapacitor has been fabricated using this layered composite as electrode material to obtain large value (~ 931 F/g) of specific capacitance. Furthermore, the optimized material demonstrated an excellent energy density (46.6 Wh kg−1) at an ultra-high power density (469 W kg−1), indicating a promising potential for industrial applications as energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Adv. Energy Mater. 4, 1300882 (2014)

    Article  Google Scholar 

  2. M. Armand, J.M. Tarascon, Nature 451, 652 (2008)

    CAS  Google Scholar 

  3. Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  5. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  6. F.E. Amitha, A.L. Reddy, S. Ramaprabh, J. Nanopart. Res. 11, 725–729 (2009)

    Article  CAS  Google Scholar 

  7. X. Jian, S. Liu, Y. Gao, W. Tian, Z. Jiang, X. Xiao, H. Tang, L. Yin, J. Electr. Eng. 4, 75–87 (2016)

    Google Scholar 

  8. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. 11, 387–392 (2001)

    Article  CAS  Google Scholar 

  9. C. Zhu, C. Guan, D. Cai, T. Chen, Y. Wang, J. Du, J. Wu, X. Xu, H. Yu, W. Huang, Batteries & Supercaps 3, 93–100 (2020)

    Article  CAS  Google Scholar 

  10. F. Marchioni, J. Yang, W. Walker, F. Wudl, J. Phys. Chem. B 110, 22202–22206 (2006)

    Article  CAS  Google Scholar 

  11. Y. Han, L. Dai, Macromol. Chem. Phys. 220, 1800355 (2019)

    Article  Google Scholar 

  12. C. Yang, H. Chen, C. Guan, Nanomaterials 9, 586 (2019)

    Article  CAS  Google Scholar 

  13. X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 6, 232 (2011)

    Article  CAS  Google Scholar 

  14. G. Liu, C. Kang, J. Fang, L. Fu, H. Zhou, Q. Liu, J. Power Sour. 431, 48–54 (2019)

    Article  CAS  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  16. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745–1752 (2009)

    Article  CAS  Google Scholar 

  17. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon 48, 487–493 (2010)

    Article  CAS  Google Scholar 

  18. W.S. Hummers, R.E. Offeman, JACS 80, 1339 (1958)

    Article  CAS  Google Scholar 

  19. H. Raha, B. Manna, D. Pradhan, P.K. Guha, Nanotechnology 30, 435404 (2019)

    Article  CAS  Google Scholar 

  20. T. Dai, X. Yang, Y. Lu, Nanotechnology 17, 3028 (2006)

    Article  CAS  Google Scholar 

  21. X.T. Zhang, J. Zhang, R.M. Wang, Chem. Phys. Chem. 5, 998 (2004)

    Article  CAS  Google Scholar 

  22. Z. Li, W. Zhang, Y. Luo, J. Yang, J.G. Hou, JACS 131, 6320–6321 (2009)

    Article  CAS  Google Scholar 

  23. D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 22, 734–738 (2010)

    Article  Google Scholar 

  24. R. Qian, Q. Pei, Z. Huang, Makromol. Chem. 192, 1263–1273 (1991)

    Article  CAS  Google Scholar 

  25. K.S. Suslick, Science 247, 1439–1445 (1990)

    Article  CAS  Google Scholar 

  26. E.B. Flint, K.S. Suslick, Science 253, 1397–1399 (1991)

    Article  CAS  Google Scholar 

  27. S.R. Elliott, Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

  28. A.R. Long, Adv. Phys. 31, 553–637 (1982)

    Article  CAS  Google Scholar 

  29. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863–4868 (2010)

    Article  CAS  Google Scholar 

  30. L. Li, H. Song, Q. Zhang, J. Yao, X. Chen, J. Power Sour. 187, 268–274 (2009)

    Article  CAS  Google Scholar 

  31. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, ACS Nano 4, 1337–1344 (2010)

    Article  CAS  Google Scholar 

  32. Z. Peng, X. Liu, H. Meng, Z. Li, B. Li, Z. Liu, S. Liu, ACS Appl. Mater. Interfaces 9, 4577–4586 (2016)

    Article  Google Scholar 

  33. P. Yu, X. Zhao, Z. Huang, Y. Li, Q. Zhang, J. Mater. Chem. A 2, 14413–14420 (2014)

    Article  CAS  Google Scholar 

  34. H. Kashani, L. Chen, Y. Ito, J. Han, A. Hirata, M. Chen, Nano Energy 19, 391–400 (2016)

    Article  CAS  Google Scholar 

  35. J. Yang, X. Ji, L. Liu, Y. Xiang, Y. Zhu, J. Alloys Compd. 820, 153081 (2020)

    Article  CAS  Google Scholar 

  36. Y. Guo, B. Chang, T. Wen, C. Zhao, H. Yin, Y. Zhou, Y. Wang, B. Yang, S. Zhang, RSC Adv. 6, 19394–19403 (2016)

    Article  CAS  Google Scholar 

  37. X. Jian, S. Liu, Y. Gao, W. Zhang, W. He, A. Mahmood, C.M. Subramaniyam, X. Wang, N. Mahmood, S.X. Dou, A.C.S. Appl, Mater & Interfaces 9, 18872–18882 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AJA and SKS acknowledges Diamond Harbour Women’s University, for giving permission to continue this work and for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Jahid Akhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, A.J., Mishra, S. & Saha, S.K. Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J Mater Sci: Mater Electron 31, 11637–11645 (2020). https://doi.org/10.1007/s10854-020-03714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03714-y

Navigation