Skip to main content
Log in

Cation distribution and enhanced surface effects on the temperature-dependent magnetization of as-prepared NiFe2O4 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel ferrite, i.e., NiFe2O4, nanoparticles are synthesized by sol–gel method using urea as a neutralizing agent. The formation of spinel phase and crystal structure of the as-prepared sample is analyzed by X-ray diffraction and transmission electron microscope. In order to confirm phase formation and cation arrangement, room temperature 57Fe Mössbauer spectroscopy is employed. The degree of inversion (i) estimated from the relative peak area is found to be 0.6, which confirms a mixed spinel structure of the as-prepared sample. Zero-field-cooled/field-cooled measurements showed evidence of superparamagnetic behavior associated with the nanosized particles. Hysteresis loop measurements revealed temperature-dependent magnetic properties: The coercive field (H C) decreases with increasing temperature and deviates from the Kneller’s law for ferromagnetic nanostructures; and the saturation magnetization (M s) follows modified Bloch’s law in the temperature range between 25 and 400 K. However, below 25 K, an abrupt increase in magnetization of nanoparticles is observed. In order to understand this behavior, an additional contribution has to be added to the core magnetization to properly fit the data. Hence, a surface correction term to the Bloch’s law is found to describe the temperature dependence of magnetization in the core–shell NiFe2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Son, M. Taheri, E. Carpenter, V.G. Harris, M.E. McHenry, J. Appl. Phys. 91, 7589 (2002)

    Article  ADS  Google Scholar 

  2. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. Condens. Matter 14, 3221 (2002)

    Article  ADS  Google Scholar 

  3. G. Ott, J. Wrba, R. Lucke, J. Magn. Magn. Mater. 254, 535–537 (2003)

    Article  ADS  Google Scholar 

  4. J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (Philips Technical Library, Eindhoven, 1959)

    Google Scholar 

  5. M.J. Akhtar, M. Nadeem, S. Javaid, M. Atif, J. Phys. Condens. Matter 21, 405303 (2009)

    Article  Google Scholar 

  6. R. Sato Turtelli, M. Atif, N. Mehmood, F. Kubel, K. Biernacka, W. Linert, R. Grossinger, Cz. Kapusta, M. Sikora, Mater. Chem. Phys. 132, 832–838 (2012)

    Article  Google Scholar 

  7. K.J. Standley, Oxide Magnetic Materials (Clarendon Press, Oxford, 1972)

    Google Scholar 

  8. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  9. E. Hasmonay, J. Depeyryot, M.H. Sousan, F.A. Tourinho, J.C. Bacri, R. Perzynski, Y.L. Raikher, I. Rosenman, J. Appl. Phys. 88, 6628 (2000)

    Article  ADS  Google Scholar 

  10. J.Z. Jaing, G.F. Goya, H.R. Rechenberg, J. Phys. Condens. Matter 11, 4063 (1999)

    Article  ADS  Google Scholar 

  11. V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, J. Magn. Magn. Mater. 257, 377–386 (2003)

    Article  ADS  Google Scholar 

  12. J. Jacob, K.M. Abdul, J. Appl. Phys. 107, 114310 (2010)

    Article  ADS  Google Scholar 

  13. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubyashi, I. Nakatani, Phys. Rev. B 63, 184108 (2001)

    Article  ADS  Google Scholar 

  14. K. Maaz, A. Mumtaz, S.K. Hasanain, M.F. Bertino, J. Magn. Magn. Mater. 322, 2199–2202 (2010)

    Article  ADS  Google Scholar 

  15. D.T.T. Nguyet, N.P. Duong, L.T. Hung, T.D. Hien, T. Satoh, J. Alloys Compd. 509, 6621–6625 (2011)

    Article  Google Scholar 

  16. C. Vázquez-Vázquez, M.A. López-Quintela, M.C. Buján-Núňez, J. Rivas, J. Nanopart. Res. 13, 1663–1676 (2011)

    Article  Google Scholar 

  17. A. McDannald, M. Staruch, M. Jain, J. Appl. Phys. 112, 123916 (2012)

    Article  ADS  Google Scholar 

  18. J. Huo, M. Wei, Mater. Lett. 63, 1183–1184 (2009)

    Article  Google Scholar 

  19. D. Gherca, A. Pui, V. Nica, O. Caltun, N. Cornei, Ceram. Int. 40, 9599–9607 (2014)

    Article  Google Scholar 

  20. M. Atif, M. Nadeem, J. Sol-Gel. Sci. Technol. 72, 615 (2014)

    Article  Google Scholar 

  21. K. Sudalai Muthu, N. Lakshminarasimhan, Ceram. Int. 39, 2309–2315 (2013)

    Article  Google Scholar 

  22. Z. Zhang, G. Yao, X. Zhang, J. Ma, H. Lin, Ceram. Int. 41, 4523–4530 (2015)

    Article  Google Scholar 

  23. A.S. Edelstein, R.C. Cammarata, Synthesis Properties and Applications (IOP, London, 1996)

    Book  Google Scholar 

  24. M. Atif, S.K. Hasanian, M. Nadeem, Solid State Commun. 138, 416 (2006)

    Article  ADS  Google Scholar 

  25. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction (Prentice Hall, Upper Saddle River, NJ, 2001)

    Google Scholar 

  26. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Article  ADS  Google Scholar 

  27. M. Arshed, M. Siddique, M. Anwar-ul-Islam, N.M. Butt, T. Abbas, M. Ahmad, Solid State Commun. 93, 599–602 (1995)

    Article  ADS  Google Scholar 

  28. K.P. Thummer, M.C. Chhantbar, K.B. Modi, G.J. Baldha, H.H. Joshi, Mater. Lett. 58, 2248–2251 (2004)

    Article  Google Scholar 

  29. M. Atif, R. Sato Turtelli, R. Grössinger, M. Siddique, M. Nadeem, Ceram. Int. 40, 471–478 (2014)

    Article  Google Scholar 

  30. M. Siddique, R.T. Ali Khan, M. Shafi, J. Radioanal. Nucl. Chem. 277, 531–537 (2008)

    Article  Google Scholar 

  31. M. Younas, M. Atif, M. Nadeem, M. Siddique, M. Idrees, R. Grossinger, J. Phys. D Appl. Phys. 44, 345402 (2011)

    Article  Google Scholar 

  32. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A.C. Basaran, J. Magn. Magn. Mater. 321, 157–162 (2009)

    Article  ADS  Google Scholar 

  33. Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  34. M. Atif, M. Nadeem, R. Grossinger, R. Sato Turtelli, J. Alloys Compd. 509, 5720–5724 (2011)

    Article  Google Scholar 

  35. F. Bloch, Z. Phys. 61, 206–219 (1931)

    Article  ADS  Google Scholar 

  36. A.H. Morrish, The Physical Principles of Magnetism (Wiley, New York, 1965)

    Google Scholar 

  37. R.H. Kodama, J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  ADS  Google Scholar 

  38. K. Mandal, S. Mitra, P.A. Kumar, Europhys. Lett. 75, 618–623 (2006)

    Article  ADS  Google Scholar 

  39. E.F. Kneller, F.E. Luborsky, J. Appl. Phys. 34, 656 (1963)

    Article  ADS  Google Scholar 

  40. K. Maaz, S. Karim, K.J. Lee, M.-H. Jung, G.-H. Kim, Mater. Chem. Phys. 133, 1006–1010 (2012)

    Article  Google Scholar 

  41. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Atif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atif, M., Nadeem, M. & Siddique, M. Cation distribution and enhanced surface effects on the temperature-dependent magnetization of as-prepared NiFe2O4 nanoparticles. Appl. Phys. A 120, 571–578 (2015). https://doi.org/10.1007/s00339-015-9216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9216-y

Keywords

Navigation