Skip to main content
Log in

Highly oxidized graphene nanosheets via the oxidization of detonation carbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A unique approach was developed to produce highly oxygenated graphene nanosheets (OGNs) by solution-based oxidation of the pristine graphene nanosheets (GNs) prepared via a controlled detonation of acetylene with oxygen. The produced OGNs are about 250 nm in size and are hydrophilic in nature. The C/O ratio was dramatically reduced from 49:1 in the pristine GNs to about 1:1 in OGNs, as determined by X-ray photoelectron spectroscopy. This C/O in OGNs is the least ever found in all oxidized graphitic materials that have been reported. Thus, the OGNs produced from the detonated GNs with such high degree of oxidation herein yield a novel and promising material for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192 (2008)

    Article  Google Scholar 

  3. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  4. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Nano Lett. 8, 1704 (2008)

    Article  ADS  Google Scholar 

  5. G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Carbon 47, 1359 (2009)

    Article  Google Scholar 

  6. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  7. Y.M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouri, Nano Lett. 9, 422 (2009)

    Article  ADS  Google Scholar 

  8. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  9. N. Mohanty, V. Berry, Nano Lett. 8, 4469 (2008)

    Article  ADS  Google Scholar 

  10. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Pinen, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  11. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Mommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, Nano Lett. 7, 1888 (2007)

    Article  ADS  Google Scholar 

  12. T. Takamura, K. Endo, L. Fu, Y.P. Wu, K.J. Lee, T. Matsumoto, Electrochim. Acta 53, 1055 (2007)

    Article  Google Scholar 

  13. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  14. D. Li, M.B. Muller, S. Gijle, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008)

    Article  ADS  Google Scholar 

  15. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Langmuir 25, 12030 (2009)

    Article  Google Scholar 

  16. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Prog. Mater. Sci. 57, 1061 (2012)

    Article  Google Scholar 

  17. C. Go´mez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499 (2007)

    Article  ADS  Google Scholar 

  18. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130, 5856 (2008)

    Article  Google Scholar 

  19. H. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)

    Article  Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner, A.K. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  21. G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)

    Article  Google Scholar 

  22. X. Wang, L. Zhi, K. Mullen, Nano Lett. 8, 323 (2008)

    Article  ADS  Google Scholar 

  23. A.D. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007)

    Article  ADS  Google Scholar 

  24. A. Nepal, G.P. Singh, B.N. Flanders, C.M. Sorensen, Nanotechnology 24, 245602 (2013)

    Article  ADS  Google Scholar 

  25. F. Xia, D.B. Farmer, Y.M. Lin, P. Avouris, Nano Lett. 10, 715 (2010)

    Article  ADS  Google Scholar 

  26. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  Google Scholar 

  27. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740 (2006)

    Article  Google Scholar 

  28. A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998)

    Article  Google Scholar 

  29. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  30. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  31. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  32. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)

    Article  ADS  Google Scholar 

  33. T.C. Chieu, M.S. Dresselhaus, M. Endo, Phys. Rev. B 26, 5867 (1982)

    Article  ADS  Google Scholar 

  34. A.A. Alhwaige, T. Agag, H. Ishida, S. Qutubuddin, RSC Adv. 3, 16011 (2013)

    Article  Google Scholar 

  35. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44, 3342 (2006)

    Article  Google Scholar 

  36. T. Szabo, O. Berkesi, I. Dekany, Carbon 43, 3181 (2005)

    Article  Google Scholar 

  37. G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, H. Bianco-Peled, Carbon 43, 641 (2005)

    Article  Google Scholar 

  38. H. Zhang, D. Hines, D.L. Akins, Dalton Trans. 43, 2670 (2014)

    Article  Google Scholar 

  39. G.P. Singh, K.M. Shrestha, A. Nepal, K.J. Klabunde, C.M. Sorensen, Nanotechnology 25, 265701 (2014)

    Article  ADS  Google Scholar 

  40. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G.G. Gurzadyan, Sci. Rep. 2, 792 (2012)

    Article  ADS  Google Scholar 

  41. G. Eda, M. Chhowalla, Adv. Mater. 22, 2392 (2010)

    Article  Google Scholar 

  42. J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Langmuir 24, 10560 (2008)

    Article  Google Scholar 

  43. A. Kolmakov, D.A. Dikin, L.J. Cote, J. Huang, M.K. Abyaneh, M. Amati, L. Gregoratti, S. Gunther, M. Kiskinova, Nat. Nanotechnol. 6, 651 (2011)

    Article  ADS  Google Scholar 

  44. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  45. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev. 112, 6156 (2012)

    Article  Google Scholar 

  46. M. Quintana, J.I. Tapia, M. Prato, Beilstein J. Nanotechnol. 5, 2328 (2014)

    Article  Google Scholar 

  47. R. Sharma, J.H. Baik, C.J. Perera, M.S. Strano, Nano Lett. 10, 398 (2010)

    Article  ADS  Google Scholar 

  48. M. Quintana, K. Spyrou, M. Grzelczak, W.R. Browne, P. Rudolf, M. Prato, ACS Nano 4, 3527 (2010)

    Article  Google Scholar 

  49. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26–41 (2011)

    Article  Google Scholar 

  50. O. Akhavan, Carbon 48, 509 (2010)

    Article  Google Scholar 

  51. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, J. Phys. Chem. C 115, 17009 (2011)

    Article  Google Scholar 

  52. K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi, E. Jaehne, ChemPhysChem 11, 2131 (2010)

    Article  Google Scholar 

  53. D. Hadzi, A. Novak, Trans. Faraday Soc. 51, 1614 (1955)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel L. Boyle, Dr. Leila Maurmann and Dr. Xiuzhi Sun for helping us to obtain TEM images, FTIR and TGA, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Sorensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nepal, A., Chiu, G., Xie, J. et al. Highly oxidized graphene nanosheets via the oxidization of detonation carbon. Appl. Phys. A 120, 543–549 (2015). https://doi.org/10.1007/s00339-015-9213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9213-1

Keywords

Navigation