Skip to main content
Log in

The role of benzoyl peroxide in graphene oxidation

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene oxide (GO), a two-dimensional material with exceptional properties such as high mechanical strength and electrical conductivity, has attracted considerable attention in materials science and engineering. This study introduces a novel GO synthesis method using benzoyl peroxide (BPO) as the oxidizing agent, which offers simplicity, scalability, and versatile application potential. Carbon nanostructures were synthesized by chemical vapor deposition and then treated with BPO, resulting in thin GO sheets as shown by scanning electron microscopy. The low oxygen concentration was revealed by energy-dispersive X-ray spectroscopy. The characteristic D, G, and G’ peaks at 1342, 1580, and 2680 cm−1, respectively, were detected by Raman spectroscopy. The presence of defects was confirmed by Fourier transform infrared spectroscopy, which revealed characteristic C=O and OH bonding bands.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. K. Novoselov, A. Geim, S. Morozov et al., Nature (2005). https://doi.org/10.1038/nature04233

    Article  Google Scholar 

  2. I. Levchenko, K.K. Ostrikov, J. Zheng, X. Li, M. Keidar, K.B.K. Teo, Nanoscale (2016). https://doi.org/10.1039/c5nr06537b

    Article  Google Scholar 

  3. J. Park, M. Yan, Acc. Chem. Res. (2012). https://doi.org/10.1021/ar300172h

    Article  Google Scholar 

  4. J. Shen, Y. Hu, M. Shi, X. Lu, Q. Chen, C. Li, M. Ye, Chem. Mater. (2009). https://doi.org/10.1021/cm901247t

    Article  Google Scholar 

  5. X. Li, G. Zhang, X. Bai et al., Nat. Nanotechnol. (2008). https://doi.org/10.1038/nnano.2008.210

    Article  Google Scholar 

  6. H. Liu, S. Ryu, Z. Chen, M.L. Steigerwald, C. Nuckolls, L.E. Brus, J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja9043906

    Article  Google Scholar 

  7. R. Muzyka, M. Koka, L. Smedoski, N. Díez, G. Gryglewicz, N. Carbon Mater. (2017). https://doi.org/10.1016/S1872-5805(17)60102-1

    Article  Google Scholar 

  8. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. (1958). https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  9. A. Ferrari, D. Basko, Nat. Nanotechnol. (2013). https://doi.org/10.1038/nnano.2013.46

    Article  Google Scholar 

  10. L.M. Malard, M.A. Pimienta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. (2009). https://doi.org/10.1016/j.physrep.2009.02.003

    Article  Google Scholar 

  11. L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, M.A. Pimenta, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2196057

    Article  Google Scholar 

  12. F. Tunistra, J.L. Koenig, J. Chem. Phys. (1970). https://doi.org/10.1063/1.1674108

    Article  Google Scholar 

  13. Rattana, S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Procedia Eng. (2012). https://doi.org/10.1016/j.proeng.2012.02.009

    Article  Google Scholar 

  14. R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Materials (2018). https://doi.org/10.3390/ma11071050

    Article  Google Scholar 

  15. V.A. Chhabra, A. Deep, R. Kaur, R. Kumar, Int. J. Sci. Emerg. Technol. with Latest Trends, 4, 13–19 (2012)

    Google Scholar 

  16. D. Mcintosh, V.N. Khabashesku, E.V. Barrera, J. Phys. Chem. C (2007). https://doi.org/10.1021/jp065399d

    Article  Google Scholar 

  17. K. Song, X. Zhao, Y. Xu et al., J. Mater. Sci. (2013). https://doi.org/10.1007/s10853-013-7367-9

    Article  Google Scholar 

  18. P.K. Chu, L. Li, Mater. Chem. Phys. (2006). https://doi.org/10.1016/j.matchemphys.2005.07.048

    Article  Google Scholar 

  19. S. Wang, S.P. Jiang, X. Wang, Electrochim. Acta. Acta (2011). https://doi.org/10.1016/j.electacta.2011.01.016

    Article  Google Scholar 

  20. A.C. Obreja, D. Cristea, R. Gavrila, V. Schiopu, A. Dinescu, M. Danila, F. Comanescu, Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2013.03.117

    Article  Google Scholar 

  21. M. Kadari, M. Makhlouf, Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2021.09.426

    Article  Google Scholar 

  22. R.R. Corona, C.M.S. Sad, M. Da Silva, D.L. Lopes, J.S. Leite, G.M. Viégas, G.R. Goncalves, P.R. Filgueiras, E.V.R. De Castro, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.106858

    Article  Google Scholar 

  23. J. Guerrero-Contreras, F. Caballero-Briones, Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.01.005

    Article  Google Scholar 

  24. G. Wang, X. Sun, C. Liu, J. Lian, Appl. Phys. Lett.Lett. (2011). https://doi.org/10.1063/1.3622637

    Article  Google Scholar 

  25. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano (2010). https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgment for the postdoctoral fellowship to UNAM-DGAPA and CONAHCYT (CVU 488498).

Funding

No applicable.

Author information

Authors and Affiliations

Authors

Contributions

DCLM: contributed to research, writing, data collection, and analysis. OH-C contributed to review and editing. BOAR contributed to review and editing. FGG-M contributed to research, analysis design and performance, review, and editing.

Corresponding author

Correspondence to Francisco Gabriel Granados-Martínez.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

No applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna Mañon, D.C., Hernández-Cristóbal, O., Aguilar Reyes, B. et al. The role of benzoyl peroxide in graphene oxidation. MRS Advances 8, 1249–1253 (2023). https://doi.org/10.1557/s43580-023-00709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00709-9

Navigation