Skip to main content
Log in

Highly uniform resistive switching effect in amorphous Bi2O3 thin films fabricated by a low-temperature photochemical solution deposition method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly uniform resistive switching performance has been demonstrated in amorphous Bi2O3 thin films. The thin films were prepared by using a low-temperature photochemical solution deposition method simply combining chemical solution deposition and ultraviolet irradiation treatment. The Pt/Bi2O3/Pt memory devices exhibit reproducible resistive switching performance, uniform switching voltage, concentralized distribution of high and low resistance states, and good endurance. The conduction mechanisms of the thin films were discussed on the basis of analysis of current–voltage characteristics. The excellent resistive switching performance of the amorphous Bi2O3 thin films can be attributed to the reduction of –OH groups and the formation of enhanced Bi–O bonding under UV irradiation treatment, based on X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and field-emission scanning electron microscopy analysis. Our study suggests that amorphous Bi2O3 thin films have potential applications in resistive memory, and the UV irradiation treatment is an effective method for low-temperature fabrication of some amorphous oxide thin films with good resistive switching properties, especially for flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  2. W. Hu, N. Qin, G.H. Wu, Y.T. Lin, S.W. Li, D.H. Bao, J. Am. Chem. Soc. 134, 14658 (2012)

    Article  Google Scholar 

  3. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  4. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13 (2013)

    Article  ADS  Google Scholar 

  5. S. Mitra, S. Chakraborty, K.S.R. Menon, Appl. Phys. A 115, 1173 (2014)

    Article  ADS  Google Scholar 

  6. S.B. Lee, S.C. Chae, S.H. Chang, J.S. Lee, S. Park, Y. Jo, S. Seo, B. Kahng, T.W. Noh, Appl. Phys. Lett. 93, 252102 (2008)

    Article  ADS  Google Scholar 

  7. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005)

    Article  ADS  Google Scholar 

  8. J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  9. L.L. Zou, W. Hu, J.H. Fu, N. Qin, S.W. Li, D.H. Bao, AIP Adv. 4, 037106 (2014)

    Article  ADS  Google Scholar 

  10. S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B.H. Park, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, Y.S. Joung, I.K. Yoo, Jpn. J. Appl. Phys. 44, L345 (2005)

    Article  ADS  Google Scholar 

  11. W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, M.J. Tsai, Appl. Phys. Lett. 92, 022110 (2008)

    Article  ADS  Google Scholar 

  12. H.Y. Lee, P.S. Chen, C.C. Wang, S. Maikap, P.J. Tzeng, C.H. Lin, L.S. Lee, M.J. Tsai, Jpn. J. Appl. Phys. 46, 2175 (2007)

    Article  ADS  Google Scholar 

  13. S.M. Yu, H.Y. Chen, B. Gao, J.F. Kang, H.-S.P. Wong, ACS Nano 7, 2320 (2013)

    Article  Google Scholar 

  14. W. Hu, X.M. Chen, G.H. Wu, Y.T. Lin, N. Qin, D.H. Bao, Appl. Phys. Lett. 101, 063501 (2012)

    Article  ADS  Google Scholar 

  15. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  16. Y. Sharma, P. Misra, S.P. Pavunny, R.S. Katiyar, Appl. Phys. Lett. 104, 073501 (2014)

    Article  ADS  Google Scholar 

  17. D.Q. Liu, N.N. Wang, G. Wang, Z.Z. Shao, X. Zhu, C.Y. Zhang, H.F. Cheng, Appl. Phys. Lett. 102, 134105 (2013)

    Article  ADS  Google Scholar 

  18. S.Q. Liu, N.J. Wu, A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000)

    Article  ADS  Google Scholar 

  19. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006)

    Article  ADS  Google Scholar 

  20. J.A. Koza, E.W. Bohannan, J.A. Switzer, ACS Nano 7, 9940 (2013)

    Article  Google Scholar 

  21. R.M. Pasquarelli, D.S. Ginley, R.O. Hayre, Chem. Soc. Rev. 40, 5405 (2011)

    Article  Google Scholar 

  22. J.P. George, J. Beeckman, W. Woestenborghs, P.F. Smet, W. Bogaerts, K. Neyts, Nanoscale Res. Lett. 8, 62 (2013)

    Article  ADS  Google Scholar 

  23. Y.H. Kim, J.S. Heo, T.H. Kim, S.J. Park, M.H. Yoon, J.W. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park, Nature 489, 128 (2012)

    Article  ADS  Google Scholar 

  24. M.L. Calzada, A. González, R. Poyato, L. Pardo, J. Mater. Chem. 13, 1451 (2003)

    Article  Google Scholar 

  25. H.C. Cheng, C.F. Chen, C.Y. Tsay, Appl. Phys. Lett. 90, 012113 (2007)

    Article  ADS  Google Scholar 

  26. Y.H. Hwang, S.J. Seo, J.H. Jeon, B.S. Bae, Electrochem. Solid-State Lett. 15, H91 (2012)

    Article  Google Scholar 

  27. H. Huang, J.S. Huang, C.C. Lai, H.W. Huang, S.J. Lin, Y.L. Chueh, A.C.S. Appl, Mater. Interfaces 5, 6017 (2013)

    Article  Google Scholar 

  28. S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater. 12, 1346 (2010)

    Article  Google Scholar 

  29. W. Hu, L.L. Zou, X.M. Chen, N. Qin, S.W. Li, D.H. Bao, A.C.S. Appl, Mater. Interfaces 6, 5012 (2014)

    Article  Google Scholar 

  30. L.L. Zou, W. Hu, W. Xie, R.Q. Chen, N. Qin, B.J. Li, D.H. Bao, Appl. Surf. Sci. 311, 697 (2014)

    Article  ADS  Google Scholar 

  31. X.M. Chen, G.H. Wu, D.H. Bao, Appl. Phys. Lett. 93, 093501 (2008)

    Article  ADS  Google Scholar 

  32. G.A. Niklasson, K. Brantervik, J. Appl. Phys. 59, 980 (1986)

    Article  ADS  Google Scholar 

  33. K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, C.S. Huang, Appl. Phys. Lett. 91, 012907 (2007)

    Article  ADS  Google Scholar 

  34. D.S. Shang, L.D. Chen, Q. Wang, W.Q. Zhang, Z.H. Wu, X.M. Li, Appl. Phys. Lett. 89, 172102 (2006)

    Article  ADS  Google Scholar 

  35. R.Q. Chen, W. Hu, L.L. Zou, W. Xie, B.J. Li, D.H. Bao, Appl. Phys. Lett. 104, 242111 (2014)

    Article  ADS  Google Scholar 

  36. Z.B. Yan, Y.Y. Guo, G.Q. Zhang, J.M. Liu, Adv. Mater. 23, 1351 (2011)

    Article  Google Scholar 

  37. K.M. Kim, G.H. Kim, S.J. Song, J.Y. Seok, M.H. Lee, J.H. Yoon, C.S. Hwang, Nanotechnology 21, 305203 (2010)

    Article  ADS  Google Scholar 

  38. W.H. Guan, M. Liu, S.B. Long, Q. Liu, W. Wang, Appl. Phys. Lett. 93, 223506 (2008)

    Article  ADS  Google Scholar 

  39. Y. Zhang, H.Q. Wu, Y. Bai, A. Chen, Z.P. Yu, J.Y. Zhang, H. Qian, Appl. Phys. Lett. 102, 233502 (2013)

    Article  ADS  Google Scholar 

  40. Y.S. Dai, Y. Wang, J. Yao, Q.Y. Wang, L.M. Liu, W. Chu, G.Y. Wang, Catal. Lett. 123, 307 (2008)

    Article  Google Scholar 

  41. Y.S. Rim, H.S. Lim, H.J. Kim, A.C.S. Appl, Mater. Interfaces 5, 3565 (2013)

    Article  Google Scholar 

  42. J.J. Yang, J.P. Strachan, Q.F. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 4034 (2010)

    Article  Google Scholar 

  43. Y. Jo, K. Jung, J. Kim, H. Woo, J. Han, H. Kim, J. Hong, J.K. Lee, H. Im, Sci. Rep. 4, 7354 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Natural Science Foundation of China (No. 51372281), National Basic Research Program (973 Program) of China (No. 2012CB619302), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghua Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Hu, W., Zou, L. et al. Highly uniform resistive switching effect in amorphous Bi2O3 thin films fabricated by a low-temperature photochemical solution deposition method. Appl. Phys. A 120, 379–384 (2015). https://doi.org/10.1007/s00339-015-9199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9199-8

Keywords

Navigation