Skip to main content
Log in

Heat accumulation in microdrilled glass from ultraviolet laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present numerical and experimental studies of heat accumulation during high-aspect-ratio ultraviolet laser microdrilling of glass. The dependence on pulse repetition rate of the ablation threshold was studied. The rate determines the amount of heat accumulation and temperature variation across the illuminated area. No change in the glass was observed for pulse energies below 1 µJ at 1 kHz; melting occurred at 0.3 µJ, with ablation at 0.7 µJ at 20 kHz. Also, the hole depth doubled when the pulse repetition rate was increased from 1 to 20 kHz. Moreover, the fluence of ~4 J/cm2 that passed through drilled holes at 1 kHz decreased to ~1 J/cm2 at 20 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.L. Li, T.T. Lin, P.M. Moran, Appl. Phys. A 81, 753 (2005)

    Article  ADS  Google Scholar 

  2. A. Ancona, F. Roser, K. Rademaker, J. Limpert, S. Nolte, A. Tunnermann, Opt. Express 16, 8958 (2008)

    Article  ADS  Google Scholar 

  3. F. Brygo, A. Semerok, R. Oltra, J.M. Weulersse, S. Fomichev, Appl. Surf. Sci. 252, 8314 (2006)

    Article  ADS  Google Scholar 

  4. S. Hiramoto, M. Moriyasu, S. Takeno, Effect of beam-plasma interaction on characteristics of drilling: study on materials processing by high peak short pulse CO2 laser (Report 2). Q. J. Jpn. Weld. Soc. 11, 75 (1993)

    Article  Google Scholar 

  5. J. Finger, M. Reininghaus, Opt. Express 22, 18790 (2014)

    Article  Google Scholar 

  6. A. Weck, T.H.R. Crawford, D.S. Wilkinson, H.K. Haugen, J.S. Preston, Appl. Phys. A 90, 537 (2008)

    Article  ADS  Google Scholar 

  7. F. Di Niso, C. Gaudiuso, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugarà, Opt. Express 22, 12200 (2014)

    Article  ADS  Google Scholar 

  8. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Opt. Express 22, 11312 (2014)

    Article  ADS  Google Scholar 

  9. C.B. Schaffer, J.F. García, E. Mazur, Appl. Phys. A 76, 351 (2003)

    Article  ADS  Google Scholar 

  10. S. Karimelahi, L. Abolghasemi, P. Herman, Appl. Phys. A 114, 91 (2014)

    Article  ADS  Google Scholar 

  11. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Express 13, 4708 (2005)

    Article  ADS  Google Scholar 

  12. S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 103, 257 (2011)

    Article  ADS  Google Scholar 

  13. T. Tamaki, W. Watanabe, K. Itoh, Opt. Express 14, 10460 (2006)

    Article  ADS  Google Scholar 

  14. C. S. Nielsen, P. Balling, J. Appl. Phys. 99, 093101 (2006)

    Article  ADS  Google Scholar 

  15. S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, S. Nolte, Opt. Express 20, 27147 (2012)

    Article  ADS  Google Scholar 

  16. S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, S. Nolte, Phys. Procedia 41, 431 (2013)

    Article  ADS  Google Scholar 

  17. D. Esser, S. Rezaei, J. Li, P.R. Herman, J. Gottmann, Opt. Express 19, 25632 (2011)

    Article  ADS  Google Scholar 

  18. L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)

    Article  ADS  Google Scholar 

  19. A. Salleo, T. Sands, F.Y. Genin, Appl. Phys. A 71, 601 (2000)

    Article  ADS  Google Scholar 

  20. D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos, Appl. Phys. A 79, 605 (2004)

    Article  ADS  Google Scholar 

  21. X. Zhao, Y. Shin, Appl. Phys. A Mater. Sci. Process. 104, 713 (2011)

    Article  ADS  Google Scholar 

  22. C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A 84, 47 (2006)

    Article  ADS  Google Scholar 

  23. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, H. Hugel, Proc. SPIE 4184, 534 (2001)

    ADS  Google Scholar 

  24. Personal communication, Provided by the manufacturer

  25. R.I. Golyatina, A.N. Tkachev, S.I. Yakovlenko, Laser Phys. 14, 1429 (2004)

    Google Scholar 

  26. S.I. Yakovlenko, Laser Phys. 16, 1273 (2006)

    Article  ADS  Google Scholar 

  27. Schott datasheet, http://edit.schott.com/advanced_optics/english/abbe_datasheets/schott_ datasheet_n-bk7.pdf. Accessed 24 January 2015

  28. R.R. Gattass, L.R. Cerami, E. Mazur, Opt. Express 14, 5279 (2006)

    Article  ADS  Google Scholar 

  29. M.B. Volf, Chemical approach to glass (Elsevier, Amsterdam, 1984)

    Google Scholar 

  30. J.E. Shelby, Introduction to glass science and technology, 2nd edn. (Royal Society of Chemistry, Cambridge, 2005)

    Google Scholar 

  31. D. Baeuerle, Laser Processing and Chemistry, 3rd edn. (Springer, New York, 2000)

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Advanced Machining Technology and Development Association (AMTDA) and the Japan Science and Technology Agency (JST) under the Development of Innovative Seeds, Potentiality Verification Stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Hidai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidai, H., Matsusaka, S., Chiba, A. et al. Heat accumulation in microdrilled glass from ultraviolet laser ablation. Appl. Phys. A 120, 357–367 (2015). https://doi.org/10.1007/s00339-015-9196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9196-y

Keywords

Navigation