Skip to main content
Log in

On the study of the optical constants for different compositions of Sn x (GeSe)100−x thin films in terms of the electronic polarizability, electronegativity and bulk modulus

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Different compositions of amorphous Sn x (GeSe)100−x (0.0 ≤ x ≤ 0.12 at.%) thin films were deposited onto glass substrates by the thermal evaporation technique. The optical constants (n and k) and film thicknesses of Sn x (GeSe)100−x thin films were obtained based only on their measured reflectance spectra in the wavelength range 300–2500 nm. It was found that the refractive index (n) increased while the optical energy gap (E g) decreased with increasing tin content. The possible optical transition in these films obeys the allowed non-direct transitions. The obtained results were discussed in terms of the electronic polarizability (α e). The dispersion parameters [the single-oscillator energy (E 0) and the dispersion energy (E d)] were obtained by fitting the refractive index according to Wemple and Di-Domenico model. The third-order nonlinear optical susceptibility χ (3) was calculated with the help of E 0 and E d values. The obtained values of χ (3) are too high, indicating that the films under study are interesting materials for nonlinear optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, J. Lucas, J. Non-Cryst. Solids 326–327, 430–433 (2003)

    Article  Google Scholar 

  2. M. Popescu, J. Optoelectron. Adv. Mater. 7, 2189–2210 (2005)

    Google Scholar 

  3. K.A. Aly, A.M. Abd, Elnaeim, N. Afify, A.M. Abousehly. J. Non-Cryst. Solids 358, 2759–2763 (2012)

    Article  ADS  Google Scholar 

  4. K.A. Aly, A.M. Abd Elnaeim, M.A.M. Uosif, O. Abdel-Rahim, Phys. B Condens. Matter 406, 4227–4232 (2011)

    Article  ADS  Google Scholar 

  5. K. Tanaka, Phys. Rev. B 39, 1270–1279 (1989)

    Article  ADS  Google Scholar 

  6. M.A. Abdel-Rahim, M.M. Hafiz, A.Z. Mahmoud, Appl. Phys. A 118, 981–988 (2015)

    Article  ADS  Google Scholar 

  7. R. Chander, R. Thangaraj, Appl. Phys. A 99, 181–187 (2010)

    Article  ADS  Google Scholar 

  8. K.A. Aly, J. Non-Cryst. Solids 355, 1489–1495 (2009)

    Article  ADS  Google Scholar 

  9. J. Portier, J. Non-Cryst. Solids 112, 15–22 (1989)

    Article  ADS  Google Scholar 

  10. M. Nakamura, Y. Wang, O. Matsuda, K. Inoue, K. Murase, J. Non-Cryst. Solids 198–200, 740–743 (1996)

    Article  Google Scholar 

  11. A. Feltz, H. Aust, A. Blayer, J. Non-Cryst. Solids 55, 179–190 (1983)

    Article  ADS  Google Scholar 

  12. S. Asokan, G. Parthasarathy, E.S.R. Gopal, Philos. Mag. B Phys. Condens. Matter Electron. Opt. Magn. Prop. 57, 49–60 (1988)

    ADS  Google Scholar 

  13. M.A. Afifi, N.A. Hegab, H.E. Atyia, M.I. Ismael, Vacuum 83, 326–331 (2008)

    Article  Google Scholar 

  14. M.H. Ali, S.A. Fayek, Phys.Status Solidi (A) Appl. Res. 147, 577–584 (1995)

    Article  ADS  Google Scholar 

  15. S.A. Fayek, Infrared Phys. Technol. 46, 193–198 (2005)

    Article  ADS  Google Scholar 

  16. M. Kastner, Phys. Rev. Lett. 28, 355–357 (1972)

    Article  ADS  Google Scholar 

  17. H. Kumar, N. Mehta, A. Kumar, J. Therm. Anal. Calorim. 103, 903–909 (2011)

    Article  Google Scholar 

  18. K.A. Aly, A. Dahshan, F.M. Abdel-Rahim, J. Alloy. Compd. 470, 574–579 (2009)

    Article  Google Scholar 

  19. Z.G. Lian, W. Pan, D. Furniss, T.M. Benson, A.B. Seddon, K. Tomas, J. Orava, T. Wagner, Opt. Lett. 34, 1234–1236 (2009)

    Article  ADS  Google Scholar 

  20. S. Sharma, R. Kumar, A. Sareen, N. Sharma, Appl. Phys. A 118, 1551–1557 (2015)

    Article  ADS  Google Scholar 

  21. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, T.V.R. Rao, Infrared Phys. Technol. 39, 55–58 (1998)

    Article  ADS  Google Scholar 

  22. R.R. Reddy, Y.N. Ahammed, C.V.K. Reddy, S. Buddhudu, Cryst. Res. Technol. 31, 827–830 (1996)

    Article  Google Scholar 

  23. A. Bahadur, M. Mishra, Acta Phys. Pol. A 123, 737–740 (2013)

    Article  Google Scholar 

  24. H. Neumann, Cryst. Res. Technol. 39, 939–958 (2004)

    Article  Google Scholar 

  25. H. Neumann, Wasserwirtsch. Wassertech. 37, 82–83 (1987)

    Google Scholar 

  26. J.C. Phillips, Phys. Rev. Lett. 19, 415–417 (1967)

    Article  ADS  Google Scholar 

  27. J.A. Van Vechten, Phys. Rev. 182, 891–905 (1969)

    Article  ADS  Google Scholar 

  28. J.A. Van Vechten, Phys. Rev. 187, 1007–1020 (1969)

    Article  ADS  Google Scholar 

  29. F.M. Abdel-Rahim, K.A. Aly, T.M. Shatir, J. Alloy. Compd. 538, 40–44 (2012)

    Article  Google Scholar 

  30. D.S. Chemla, Phys. Rev. Lett. 26, 1441–1444 (1971)

    Article  ADS  Google Scholar 

  31. V.P. Gupta, V.K. Srivastava, P.N.L. Gupta, J. Phys. Chem. Solids 42, 1079–1085 (1981)

    Article  ADS  Google Scholar 

  32. A.A. Othman, K.A. Aly, A.M. Abousehly, Thin Solid Films 515, 3507–3512 (2007)

    Article  ADS  Google Scholar 

  33. J.M. González-Leal, E. Márquez, A.M. Bernal-Oliva, J.J. Ruiz-Pérez, R. Jiménez-Garay, Thin Solid Films 317, 223–227 (1998)

    Article  ADS  Google Scholar 

  34. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338–1351 (1971)

    Article  ADS  Google Scholar 

  35. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  36. A. Dahshan, H.H. Amer, K.A. Aly, J. Phys. D Appl. Phys. 41, 1–7 (2008)

    Article  Google Scholar 

  37. L. Tichy, H. Ticha, P. Nagels, R. Callaerts, J. Non-Cryst. Solids 240, 177–181 (1998)

    Article  ADS  Google Scholar 

  38. M. Fadel, K. Sedeek, N.A. Hegab, Vacuum 57, 307–317 (2000)

    Article  Google Scholar 

  39. K.A. Aly, Appl. Phys. A 99, 913–919 (2010)

    Article  ADS  Google Scholar 

  40. K.A. Aly, J. Alloy. Compd. 630, 178–182 (2015)

    Article  Google Scholar 

  41. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, P. Abdul Azeem, D.V. Raguram, T.V.R. Rao, J. Magn. Magn. Mater. 192, 516–522 (1999)

    Article  ADS  Google Scholar 

  42. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, P. Abdul Azeem, T.V.R. Rao, P. Mallikarjuna Reddy, Opt. Mater. 14, 355–358 (2000)

    Article  ADS  Google Scholar 

  43. E. Márquez, J.M. González-Leal, R. Jiménez-Garay, M. Vlcek, Thin Solid Films 396, 183–190 (2001)

    Article  Google Scholar 

  44. K.A. Aly, Philos. Mag. 89, 1063–1079 (2009)

    Article  ADS  Google Scholar 

  45. J.M. González-Leal, M. Stuchlik, M. Vlcek, R. Jiménez-Garay, E. Márquez, Appl. Surf. Sci. 246, 348–355 (2005)

    Article  ADS  Google Scholar 

  46. S.S. Fouad, S.A. Fayek, M.H. Ali, Vacuum 49, 25–30 (1998)

    Article  Google Scholar 

  47. Y.B. Saddeek, K.A. Aly, Mater. Chem. Phys. 144, 433–439 (2014)

    Article  Google Scholar 

  48. E. Márquez, J.M. González-Leal, A.M. Bernal-Oliva, R. Jiménez-Garay, T. Wagner, J. Non-Cryst. Solids 354, 503–508 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal A. Aly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, K.A. On the study of the optical constants for different compositions of Sn x (GeSe)100−x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A 120, 293–299 (2015). https://doi.org/10.1007/s00339-015-9187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9187-z

Keywords

Navigation