Skip to main content
Log in

Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger–Akahira–Sunose and Ozawa–Flynn–Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as “strong glass former.” The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran–Colmenero’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.Z. Jiang, D. Hofmann, D.J. Jarvis, H.J. Fecht, Adv. Eng. Mater. (2014). doi:10.1002/adem.201400252

    Google Scholar 

  2. W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng., R 44, 45–89 (2004)

    Article  Google Scholar 

  3. M.F. Ashby, A.L. Greer, Scripta Mater. 54, 321–326 (2006)

    Article  Google Scholar 

  4. P.K. Liaw, G.Y. Wang, J. Schneider, JOM 62, 69 (2010)

    Article  Google Scholar 

  5. Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Scripta Mater. 56, 161–164 (2007)

    Article  Google Scholar 

  6. B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, E. Ma, Scripta Mater. 61, 423–426 (2009)

    Article  Google Scholar 

  7. Y.C. Kim, W.T. Kim, D.H. Kim, Mater. Sci. Eng., A 375–377, 127–135 (2004)

    Article  Google Scholar 

  8. P. Gong, K.F. Yao, Y. Shao, J. Alloys Compd. 536, 26–29 (2012)

    Article  Google Scholar 

  9. G.J. Hao, J.P. Lin, Y. Zhang, G.L. Chen, Z.P. Lu, Mater. Sci. Eng., A 527, 6248–6250 (2010)

    Article  Google Scholar 

  10. L. Liu, Z.F. Wu, J. Zhang, J. Alloys Compd. 339, 90–95 (2002)

    Article  Google Scholar 

  11. Y.D. Sun, Z.Q. Li, J.S. Liu, J.N. Yang, M.Q. Cong, J. Alloys Compd. 10, 302–307 (2010)

    Article  Google Scholar 

  12. T. Wang, X. Yang, Q. Li, Thermochim. Acta 579, 9–14 (2014)

    Article  Google Scholar 

  13. X.C. Lu, H.Y. Li, J. Therm. Anal. Calorim. 115, 1089–1097 (2014)

    Article  Google Scholar 

  14. Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, Y. Yao, J. Non-Cryst. Solids 415, 42–50 (2015)

    Article  ADS  Google Scholar 

  15. P. Gong, K. Yao, S. Zhao, J. Therm. Anal. Calorim. (2015). doi:10.1007/s10973-015-4549-5

    Google Scholar 

  16. J. Schroers, Acta Mater. 56, 471–478 (2008)

    Article  Google Scholar 

  17. R. Busch, Y.J. Kim, W.L. Johnson, J. Appl. Phys. 77, 4039–4043 (1995)

    Article  ADS  Google Scholar 

  18. A. Takeuchi, A. Inoue, Mater. Sci. Eng., A 304–306, 446–451 (2001)

    Article  Google Scholar 

  19. H.E. Kissinger, Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  20. T. Ozawa, J. Therm. Anal. 2, 301–324 (1970)

    Article  Google Scholar 

  21. A.T. Patel, A. Pratap, J. Therm. Anal. Calorim. 107, 159–165 (2012)

    Article  Google Scholar 

  22. T. Ozawa, Bull. Chem. Soc. Jpn 38, 1881–1886 (1965)

    Article  Google Scholar 

  23. J. Málek, Thermochim. Acta 267, 61–73 (1995)

    Article  Google Scholar 

  24. J.S. Blazquez, C.F. Conde, A. Conde, Acta Mater. 53, 2305–2311 (2005)

    Article  Google Scholar 

  25. S. Ranganathan, M. Von Heimendahl, J. Mater. Sci. 16, 2401–2404 (1981)

    Article  ADS  Google Scholar 

  26. S. Cheng, C. Wang, M. Ma, D. Shan, B. Guo, Thermochim. Acta 587, 11–17 (2014)

    Article  Google Scholar 

  27. A. Pratap, K.G. Raval, A. Gupta, S.K. Kulkarni, Bull. Mater. Sci. 23, 185–188 (2000)

    Article  Google Scholar 

  28. C.A. Angell, Science 267, 1924–1935 (1995)

    Article  ADS  Google Scholar 

  29. R. Brüning, K. Samwer, Phys. Rev. B 46, 11318 (1992)

    Article  ADS  Google Scholar 

  30. E.S. Park, J.H. Na, D.H. Kim, Appl. Phys. Lett. 91, 031907 (2007)

    Article  ADS  Google Scholar 

  31. S.C. Glade, R. Busch, D.S. Lee, W.L. Johnson, R.K. Wunderlich, H.J. Fecht, J. Appl. Phys. 87, 7242–7248 (2000)

    Article  ADS  Google Scholar 

  32. D.J. Wang, Y.J. Huang, J. Shen, J. Non-Cryst. Solids 355, 986–990 (2009)

    Article  ADS  Google Scholar 

  33. J.M. Barandiaran, J. Colmenero, J. Non-Cryst. Solids 46, 277–287 (1981)

    Article  ADS  Google Scholar 

  34. K. Xu, Y. Wang, J. Li, Q. Li, Acta Metall. Sin. (Engl. Lett.) 26, 56–62 (2013)

    Article  MathSciNet  Google Scholar 

  35. J. Mao, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, Z.Q. Hu, J. Alloys Compd. 496, 595–599 (2010)

    Article  Google Scholar 

  36. P. Gong, K.F. Yao, X. Wang, Y. Shao, Adv. Eng. Mater. 15, 691–696 (2013)

    Article  Google Scholar 

  37. P. Gong, X. Wang, Y. Shao, N. Chen, K.F. Yao, China Phys. Mech. Astron. 56, 2090–2097 (2013)

    Article  Google Scholar 

  38. X.H. Lin, W.L. Johnson, J. Appl. Phys. 78, 6514–6519 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51271095 and 51101090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Gong or Kefu Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Zhao, S., Wang, X. et al. Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry. Appl. Phys. A 120, 145–153 (2015). https://doi.org/10.1007/s00339-015-9182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9182-4

Keywords

Navigation