Skip to main content
Log in

Laser ablation synthesis of tantalum carbide particles with specific phase assemblage and special interface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser ablation of bulk TaC in vacuum under a high power density was used to fabricate fine-sized tantalum carbide particles, i.e., γ-TaC1−x with varied extent of carbon deficiency and α-Ta2C surrounded by an amorphous phase of Ta-doped carbon clusters or lamellae according to X-ray and electron diffraction. The predominant γ-TaC1−x has a high x value (~0.4) and almost spherical shape when rapidly solidified as submicron-sized particulates, whereas x ~ 0.2 and facetted with occasional {111} coalescence twin when condensed as nanoparticles. The minor α-Ta2C occurred either as nanocondensates with hexagonal crystal form or as a stable epitaxial intergrowth with the γ-TaC1−x particulate having close-packed planes in parallel with the precipitation process. The γ-TaC1−x and α-Ta2C nanocondensates were also coalesced approaching a secondary relationship, i.e., [011]TaC1−x //[01\( \overline{ 1} \)0]Ta2C and (100)TaC1−x //(0001)Ta2C having a fair coincidence site lattice at the interface. The refractory materials have a bimodal minimum band gap (ca. 3.8 and 2.3 eV) for potential optocatalytic and tribology applications at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.I. Gusev, A.A. Rempel, V.N. Lipatnikov, J. Phys. Condens. Matter 8, 8277 (1996)

    Article  ADS  Google Scholar 

  2. G. Santoro, H.B. Probst, Adv. X-ray Anal. 7, 126 (1963)

    Google Scholar 

  3. E.K. Storms, The Tantalum–Tantalum Carbide System, in The Refractory Carbides, ed. by E.K. Storms (Academic Press, New York, 1967)

    Google Scholar 

  4. A.L. Bowman, T.C. Wallace, J.L. Yarnell, R.G. Wenzel, E.K. Storms, Acta Crystallogr. 19, 6 (1965)

    Article  Google Scholar 

  5. K. Yvon, E. Parthé, Acta Crystallogr. B 26, 149 (1970)

    Article  Google Scholar 

  6. H. Wiesenberger, W. Lengauer, P. Ettmayer, Acta Mater. 46, 651 (1998)

    Article  Google Scholar 

  7. A.I. Gusev, A.S. Kurlov, V.N. Lipatnikov, J. Solid State Chem. 180, 3234 (2007)

    Article  ADS  Google Scholar 

  8. D.J. Rowcliffe, G. Thomas, Mater. Sci. Eng. 18, 231 (1975)

    Article  Google Scholar 

  9. R.A. Morris, D. Butts, S. DiPetro, A. Craven, L. Matson, G.B. Thompson, Comparison between HIP and VPS tantalum carbides microstructure morphologies, in SAMPE 2009 Technical Conference Proceedings, Baltimore, MD, 2009 May 18–21, pp. 1–10

  10. A. Friedrich, B. Winkler, E.A. Juarez-Arellano, L. Bayarjargal, Materials 4, 1648 (2011)

    Article  ADS  Google Scholar 

  11. S.A. Shvab, F.F. Egorov, Sov. Powder Metall. Metal Ceram. 21, 894 (1982)

    Article  Google Scholar 

  12. A. Krajewski, L. D’Alessio, G. De Maria, Cryst. Res. Technol. 33, 341 (1998)

    Article  Google Scholar 

  13. N. Ahlen, M. Johnsson, M. Nygren, Thermochim. Acta 336, 111 (1999)

    Article  Google Scholar 

  14. D.R. Lide, Handbook of Chemistry and Physics, 90th edn. (CRC Press, Boca Raton, 2009)

    Google Scholar 

  15. Y.J. Chen, J.B. Li, Q.M. Wei, H.Z. Zhai, Mater. Lett. 56, 279 (2002)

    Article  Google Scholar 

  16. A.L. Giorgi, E.G. Szklarz, E.K. Storms, A.L. Bowman, B.T. Matthias, Phys. Rev. 125, 837 (1962)

    Article  ADS  Google Scholar 

  17. K. Upadhyay, J.M. Yang, W.P. Hoffman, Am. Ceram. Soc. Bull. 76, 51 (1997)

    Google Scholar 

  18. K. Balani, G. Gonzalez, A. Agarwal, R. Hickman, J.S. O’Dell, S. Seal, J. Am. Ceram. Soc. 89, 1419 (2006)

    Article  Google Scholar 

  19. L. Leclercq, M. Provost, H. Pastor, J. Grimblot, A.M. Hardy, L. Gengembre, G. Leclercq, J. Catal. 117, 371 (1989)

    Article  Google Scholar 

  20. J.G. Choi, Appl. Catal. A 184, 189 (1999)

    Article  Google Scholar 

  21. M. Desmaison-Brut, N. Alexandre, J. Desmaison, J. Eur. Ceram. Soc. 17, 1325 (1997)

    Article  Google Scholar 

  22. K. Hackett, S. Verhoef, R.A. Cutler, D.K. Shetty, J. Am. Ceram. Soc. 92, 2404 (2009)

    Article  Google Scholar 

  23. E. Olevsky, E. Khaleghi, C. Garcia, W. Bradbury, Mater. Sci. Forum 654–656, 412 (2010)

    Article  Google Scholar 

  24. S.R. Bakshi, V. Musaramthota, D. Lahiri, V. Singh, S. Seal, A. Agarwal, Mater. Sci. Eng. A 528, 1287 (2011)

    Article  Google Scholar 

  25. C.L. Yeh, E.W. Liu, J. Alloys Compd. 415, 66 (2006)

    Article  Google Scholar 

  26. Q.Y. Zhang, X.X. Mei, D.Z. Yang, F.X. Chen, T.C. Ma, Y.M. Wang, F.N. Teng, Nucl. Instrum. Methods Phys. Res. B 127–128, 664 (1997)

    Article  Google Scholar 

  27. F.E. Palomar, P. Zambrano, M.I. Gómez, R. Colás, A. Castillo, Ing. Mec. 3, 55 (2009)

    Google Scholar 

  28. R. Teghil, L. D’Alessio, M. Zaccagnino, D. Ferro, V. Marotta, G. De Maria, Appl. Surf. Sci. 173, 233 (2001)

    Article  ADS  Google Scholar 

  29. R. Teghil, A. De Bonis, A. Galasso, P. Villani, A. Santagata, Appl. Surf. Sci. 254, 1220 (2007)

    Article  ADS  Google Scholar 

  30. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley-Interscience, Hoboken, 1994)

    Google Scholar 

  31. R. Eason (ed.), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley-Interscience, Hoboken, 2007)

    Google Scholar 

  32. V. Valvoda, Phys. Status Solidi (a) 64, 133 (1981)

    Article  ADS  Google Scholar 

  33. R. Morris, D. Butts, P.A. Shade, G.B. Thompson, Microsc. Soc. Am. 16, 1882 (2010)

    Google Scholar 

  34. K.J. Cai, Y. Zheng, P. Shen, S. Chen, CrystEngComm 16, 5466 (2014)

    Article  Google Scholar 

  35. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2, 557 (1990)

    Article  Google Scholar 

  36. A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. Lond. Ser. A 362, 2477 (2004)

    Article  ADS  Google Scholar 

  37. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  38. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  39. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  40. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnerman, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  41. N.B. Dahotre, S.P. Harimkar, Laser Fabrication and Machining of Materials (Springer, New York, 2008)

    Google Scholar 

  42. G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  43. P.E. Dyer, A. Issa, P.H. Key, Appl. Phys. Lett. 57, 186 (1990)

    Article  ADS  Google Scholar 

  44. R. Fedosejevs, F. Gobet, F. Dorchies, C. Fourment, F. Hannachi, M.M. Aléonard, G. Claverie, M.Gerbaux, G. Malka, J.N. Scheurer, M. Tarisien, V. Meot, P. Morel, B. Liesfeld, L. Robson, F. Blasco, D. Descamps, G. Schurtz, Ph. Nicolai, V. Tikhonchuk, 32nd EPS Conference on Plasma Phys. Tarragona, ECA, vol. 29C, P-1.152 (2005)

  45. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  46. R. Teghil, L. D’Alessio, G. De Maria, D. Ferro, Appl. Surf. Sci. 86, 190 (1995)

    Article  ADS  Google Scholar 

  47. M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials (Springer, New York, 1994)

    Google Scholar 

  48. V. Mazurovsky, M. Zinigrad, L. Leontiev, V. Lisin, Carbide formation during crystallization upon welding, in Proceedings of the Third International Conference on Mathematical Modeling and Computer Simulation of Material Technologies, Ariel, Israel, 2004, pp. 3/126-134

  49. H. Wilhelm, M. Lelaurain, E. McRae, B. Humbert, J. Appl. Phys. 84, 6552 (1998)

    Article  ADS  Google Scholar 

  50. C. Pan, S.Y. Chen, P. Shen, J. Phy. Chem. B 110, 24340 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Nanoscience and Nanotechnology at NSYSU and the Ministry of Science and Technology, ROC. We thank anonymous referee for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 211 kb)

Appendices

Appendix 1

See Fig. 14.

Fig. 14
figure 14

Ta–C phase diagram [1]

Appendix 2

See Fig. 15.

Fig. 15
figure 15

TEM lattice image magnified from the inset in Fig. 10a showing that the γ-TaC1−x core has the faceted surface parallel to the adjoined turbostratic graphene layers developing from the amorphous carbon (a-C) shell

Appendix 3: Gaseous phase and liquid droplet formation by nanosecond (ns) laser pulses

For the ablation of the ns laser, the material ejection is likely to be dominated by thermal processes [37]. The laser pulse duration, in these applications, is typically shorter than the time of dissipation of the absorbed laser energy by the thermal conduction, the condition that is commonly referred to as thermal confinement [38, 39]. As a result, the absorbing material can be over-heated much beyond the boiling temperature, turning a normal surface evaporation at low laser fluences into an explosive vaporization, or phase explosion, at higher fluences. Theoretical predicts [38] and laser ablation experiments [40] indicated that phase explosion results in a spontaneous decomposition of the ejected plume into a two-phase system of gaseous phase and liquid droplets.

During the ns laser ablating, photons can couple with both electronic and vibrational modes of the target material, and furthermore, the electron–electron coupling results in an immediate rise in the electron temperature and eventual vaporization of the transiently heated target [30]. When the laser power density becomes sufficiently high (>105–108 W/cm2), the vaporization starts, and the evaporated material (vapor atoms) will expand [41]. Then, the vapor plume and background gas interact each other, yielding the confinement of the plume, whereas the background gas is pushed further away from the solid target. Since the temperature in the vapor plume can rise to much high values, a plasma plume will be generated during the front part of the incident laser pulse irradiating the solid target [30]. The plasma plume excitation and ionization are mainly a result of the multiphoton absorption, ionization, and inverse-Brehmsstrahlung absorption in the gaseous phase induced by the laser pulse [39]. Therefore, the plasma plume consists of clusters, molecules, atoms, ions, and electrons from the target solid [30, 41, 42].

Appendix 4

See Fig. 16.

Fig. 16
figure 16

Standard Gibbs free energy (ΔG o, kJ/mol) of carbide-formation reactions as a function of temperature up to ca. 1600 K for TiC, TaC, and Ta2C (solid lines after Ref. [48]) having extrapolation (dash line) intersection at ca. 3000 K for TiC and TaC (cf. text)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S.S., Shen, P. & Chen, S.Y. Laser ablation synthesis of tantalum carbide particles with specific phase assemblage and special interface. Appl. Phys. A 120, 75–88 (2015). https://doi.org/10.1007/s00339-015-9171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9171-7

Keywords

Navigation