Skip to main content
Log in

Influence of Al substitution on physical properties of Pr0.67Sr0.33Mn1−x Al x O3 manganites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated the effect of Al doping on physical properties of \({\rm Pr}_{0.67}^{3+}{\rm Sr}_{0.33}^{2+}{\rm Mn}_{0.67-x}^{3+}{\rm Al}_{x}^{3+}{\rm Mn}_{0.33}^{4+}{\rm O}_{3}^{2-}\) manganites synthesized using the solid-state reaction method at high temperature. Rietveld refinement of XRD patterns revealed that all samples crystallize in an orthorhombic structure with Pnma space group. Magnetization measurements show that all samples exhibit a paramagnetic–ferromagnetic phase transition at the Curie temperature T C which decreases from 282 to 240 K when increasing Al content from x = 0.025 to 0.1, respectively. Electrical properties of samples have been investigated using admittance spectroscopy technique in 102–106 Hz and 100–320 K, frequency and temperature ranges, respectively. All samples exhibit a metallic behavior below the metal–semiconductor transition temperature (T M–Sc) and a semiconductor behavior above T M–Sc. The total conductance curves for our samples are found to obey Jonscher power law (G(ω) = G dc +  n). The activation energy (E a) increases with increasing Al content from 34.44 meV for x = 0.025 to 43.18 meV for x = 0.1. From AC conductance study, we deduced the binding energy (W m) at 100 K. Its values decrease with Al content increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The average grain size may be estimated by using an intercept method, described as follows [20]: straight lines all the same lengths are drawn through several micrographs that show the grain structure. The grains intersected by each line segment are counted; the line length is then divided by an average of the number of grains intersected, taken over all the line segments. The average grain size is found by dividing this result by the linear magnification of the micrographs.

  2. The Goldschmidt tolerance factor (t G) is a dimensional criterion which takes into account the size of the ions for characterize the different structure derived from the perovskite structures. According to this criterion, the ideal cubic structure is observed for t G = 1, the limits of stability of the perovskite phase (more or less distorted) being defined by 0.89 < t G < 1.02 [21, 22]. In particular, the rhombohedral distortions occur for 0.96 < t G < 1 and for t G < 0.96, the distortions are orthorhombic [22].

References

  1. S. Jin, T.H. Tiefel, M. Mc. Cormak, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  2. A. Moreo, S. Yunoki, E. Dagotto, Science 283, 2034 (1999)

    Article  Google Scholar 

  3. L. Millar, H. Taherparvar, N. Filkin, P. Slater, J. Yeomans, Solid State Ion. 179, 32 (2009)

    Google Scholar 

  4. V.N. Krivoruchko, M.A. Marchenko, Y. Melikhov, Phys. Rev. B 82, 064419 (2010)

    Article  ADS  Google Scholar 

  5. M. Pekala, V. Drozd, J. Alloys Compd. 456, 30 (2008)

    Article  Google Scholar 

  6. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. 55, 418 (1985)

    ADS  Google Scholar 

  7. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)

    Article  ADS  Google Scholar 

  8. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  9. M. Muroi, R. Street, P.G. McComik, J. Appl. Phys. 87, 3424 (2000)

    Article  ADS  Google Scholar 

  10. M. Medarde, J. Mesot, P. Lcorre, S. Rosenkranz, P. Fischer, K. Gobrecht, Phys. Rev. B 52, 9248 (1995)

    Article  ADS  Google Scholar 

  11. J. Blasco, J. Garcia, J.M. de Teresa, M.R. Ibarra, J. Perez, P.A. Algarabel, C. Marquina, C. Ritter, Phys. Rev. B 55, 8905 (1997)

    Article  ADS  Google Scholar 

  12. A. Mellergard, R.L. McGreevy, S.G. Eriksson, J. Phys. Condens. Matter 12, 4975 (2000)

    Article  ADS  Google Scholar 

  13. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Phys. B 404, 285 (2009)

    Article  ADS  Google Scholar 

  14. S.K. Barik, C. Krishnamoorthi, R. Mahendiran, J. Magn. Magn. Mater. 323, 1015 (2011)

    Article  ADS  Google Scholar 

  15. Pengyue Zhang, Hangfu Yang, Suyin Zhang, Hongliang Ge, Sihao Hua, Phys. B 410, 1 (2013)

    Article  ADS  Google Scholar 

  16. C.P. Reshmi, S. Savitha Pillai, K.G. Suresh, M. Raama Varma, Solid State Sci. 19, 130 (2013)

    Article  ADS  Google Scholar 

  17. H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, J. Alloys Compd. 575, 5 (2013)

    Article  Google Scholar 

  18. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969)

    Article  Google Scholar 

  19. J. Rodriguez-Carvajal, Fullprof 2000–2005, Laboratoire Leon Briouillon (CEA-CNRS)

  20. W.D. Callister Jr, Fundamentals of Materials Science and Engineering, 5th edn. (Wiley, London, 2000)

    Google Scholar 

  21. J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)

    Article  ADS  Google Scholar 

  22. Joël Cibert, Jean-François Bobo, Ulrike Lüders, C. R. Physique 6, 977 (2005)

    Article  ADS  Google Scholar 

  23. V.M. Goldschmit, Geochem Verteil Elem 7, 8 (1927)

    Google Scholar 

  24. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, J. Alloys Compd. 509, 1394 (2011)

    Article  Google Scholar 

  25. A. Guinier, in: X. Dunod (Ed.), Theorie et Technique de la Radiocristallographie, 3rd ed. (1964) 482

  26. C. Vázquez-Vázquez, M.C. Blanco, M.A. López-Quintela, R.D. Sánchez, J. Rivas, S.B. Oseroff, J. Mater. Chem. 8, 991 (1998)

    Article  Google Scholar 

  27. E. Tka, K. Cherif, J. Dhahri, E. Dhahri, J. Alloys Compd. 509, 8047 (2011)

    Article  Google Scholar 

  28. H. Terashita, J. Neumeier, J. Phys. Rev. B 71, 134402 (2005)

    Article  ADS  Google Scholar 

  29. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56, 8265 (1997)

    Article  ADS  Google Scholar 

  30. P.A. Joy, C. Raj Sankar, S.K. Date, J. Phys. Condens. Matter 14, L663 (2002)

    Article  ADS  Google Scholar 

  31. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23–28 (2007)

    Article  ADS  Google Scholar 

  32. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectics Press, London, 1996)

    Google Scholar 

  33. N.F. Mott, E.A. Davis, Electronic Process in Non Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  34. K. Funke, Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  35. S.R. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hcini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhahri, A., Dhahri, J., Hcini, S. et al. Influence of Al substitution on physical properties of Pr0.67Sr0.33Mn1−x Al x O3 manganites. Appl. Phys. A 120, 247–253 (2015). https://doi.org/10.1007/s00339-015-9161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9161-9

Keywords

Navigation