Skip to main content
Log in

Thermal evolution of vacancy-type defects in quenched FeCrNi alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of isochronal annealing on vacancy-type defects in quenched FeCrNi alloys and SUS316 was investigated via positron annihilation technique. Vacancy-type defects clustered and grew with increasing annealing temperatures of up to 523 K and, in FeCrNi alloys, were gradually annihilated with increasing temperature. The annihilation temperature was relatively insensitive to the addition of Mo and nonmetal elements, and after annealing at 673 K, the vacancy-type defects were annihilated and dislocation-type defects were formed in all of the alloys. In addition, due to the formation of Mo-vacancy complexes, the density of defects in the Mo-diluted FeCrNi model alloy was lower than that in the FeCrNi model alloy. The long lifetime of vacancy-type defects in commercial stainless steel SUS316 was smaller than that in the FeCrNi model alloys due to the nonmetal-element-induced change in mobility of the defects. Moreover, the vacancy-type and dislocation-type defects contributed to the S and W parameters of positron annihilation during the entire annealing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Sun, Y. Yang, Y. Liu, K.T. Hartwig, H. Wang, S.A. Maloy, T.R. Allen, X. Zhang, Thermal stability of ultrafine grained Fe–Cr–Ni alloy. Mater. Sci. Eng., A 542, 64–70 (2012)

    Article  Google Scholar 

  2. E. Kuramoto, T. Tsutsumi, K. Ueno, M. Ohmura, Y. Kamimura, Positron lifetime calculations on vacancy clusters and dislocations in Ni and Fe. Comput. Mater. Sci. 14, 28–35 (1999)

    Article  Google Scholar 

  3. C. Sun, K.Y. Yu, J.H. Lee, Y. Liu, H. Wang, L. Shao, S.A. Maloy, K.T. Hartwig, X. Zhang, Enhanced radiation tolerance of ultrafine grained Fe–Cr–Ni alloy. J. Nucl. Mater. 420, 235–240 (2012)

    Article  ADS  Google Scholar 

  4. T. Yoshiie, K. Sato, X. Cao, Q. Xu, M. Horiki, T.D. Troev, Defect structures before steady-state void growth in austenitic stainless steels. J. Nucl. Mater. 429, 185–189 (2012)

    Article  ADS  Google Scholar 

  5. M. Horiki, T. Yoshiie, K. Sato, Q. Xu, Point defect processes in neutron irradiated Ni, Fe–15Cr–16Ni and Ti-added modified SUS316SS. Philos. Mag. 93, 1701–1714 (2013)

    Article  ADS  Google Scholar 

  6. S. Zhu, Y. Zheng, D. Yuan, Y. Zuo, P. Fan, D. Zhou, Q. Zhang, X. Ma, B. Cui, L. Chen, W. Jiang, Y. Wu, Q. Wang, L. Peng, X. Cao, B. Wang, L. Wei, Effect of triple ion beams on radiation damage in CLAM steel. AIP Conf. Proc. 1533, 179–183 (2013)

    Article  ADS  Google Scholar 

  7. K.L. Wong, H.-J. Lee, J.-H. Shim, B. Sadigh, B.D. Wirth, Multiscale modeling of point defect interactions in Fe–Cr alloys. J. Nucl. Mater. 386–388, 227–230 (2009)

    Article  Google Scholar 

  8. M. Lambrecht, A. Almazouzi, Positron annihilation in neutron irradiated iron-based materials. J. Phys. Conf. Ser. 265, 012009 (2011)

    Article  ADS  Google Scholar 

  9. R. Wang, X. Liu, A. Ren, J. Jiang, C. Xu, P. Huang, Y. Wu, C. Zhang, X. Wang, Proton-irradiation-induced damage in Fe–0.3 wt% Cu alloys characterized by positron annihilation and nanoindentation. Nucl. Instrum. Methods Phys. Res. Sect. B 307, 545–551 (2013)

    Article  ADS  Google Scholar 

  10. M. Horiki, T. Yoshiie, S.S. Huang, K. Sato, X.Z. Cao, Q. Xu, T.D. Troev, Effects of alloying elements on defect structures in the incubation period for void swelling in austenitic stainless steels. J. Nucl. Mater. 442, S813–S816 (2013)

    Article  ADS  Google Scholar 

  11. S.M. He, N.H. van Dijk, H. Schut, E.R. Peekstok, S. van der Zwaag, Thermally activated precipitation at deformation-induced defects in Fe–Cu and Fe–Cu–B–N alloys studied by positron annihilation spectroscopy. Phys. Rev. B 81, 094103-1–094103-10 (2010)

    ADS  Google Scholar 

  12. S. Novy, P. Pareige, C. Pareige, Atomic scale analysis and phase separation understanding in a thermally aged Fe–20 at.% Cr alloy. J. Nucl. Mater. 384, 96–102 (2009)

    Article  ADS  Google Scholar 

  13. T. Ishizaki, Q. Xu, T. Yoshiie, S. Nagata, The recovery of gas-vacancy-complexes in Fe irradiated with high energy H or He ions. Mater. Trans. 45, 9–12 (2004)

    Article  Google Scholar 

  14. Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, M. Hasegawa, Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys. Phys. Rev. B 67, 224202-1–224202-6 (2003)

    Article  ADS  Google Scholar 

  15. H. Wu, X. Cao, G. Cheng, J. Wu, J. Yang, P. Zhang, Z. Li, A.Z.M.S. Rahman, R. Yu, B. Wang, Effects of copper precipitates on micro defects in deformed Fe-1.5 wt% Cu alloy. Phys. Status Solidi A 210, 1758–1761 (2013)

    Google Scholar 

  16. B.Y. Wang, S.H. Zhang, T.M. Wang, Recovery behaviour of quenched-in defects in Fe–Cr–Ni alloy by positron annihilation. Acta Metall. Sin. 33, 271–276 (1997)

    Google Scholar 

  17. J. Qiu, Y. Xin, X. Ju, L.P. Guo, B.Y. Wang, Y.R. Zhong, Q.Y. Huang, Y.C. Wu, Investigation by slow positron beam of defects in CLAM steel induced by helium and hydrogen implantation. Nucl. Instrum. Methods Phys. Res. Sect. B 267, 3162–3165 (2009)

    Article  ADS  Google Scholar 

  18. S.I. Porollo, S.V. Shulepin, Y.V. Konobeev, F.A. Garner, Influence of silicon on swelling and microstructure in Russian austenitic stainless steel EI-847 irradiated to high neutron doses. J. Nucl. Mater. 378, 17–24 (2008)

    Article  ADS  Google Scholar 

  19. M. Lambrecht, L. Malerba, Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation. Acta Mater. 59, 6547–6555 (2011)

    Article  Google Scholar 

  20. M.J. Puska, R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method. J. Phys. F Met. Phys. 13, 333–346 (1983)

    Article  ADS  Google Scholar 

  21. H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani, Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe. Mater. Sci. Eng. A 350, 95–101 (2003)

    Article  Google Scholar 

  22. T. Yoshiie, X. Cao, Q. Xu, K. Sato, T.D. Troev, Damage structures in austenitic stainless steels during incubation period of void swelling. Phys. Status Solidi A 6, 2333–2335 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, under Grant Nos. 91226103 and 91026006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C.X., Cao, X.Z., Li, Y.H. et al. Thermal evolution of vacancy-type defects in quenched FeCrNi alloys. Appl. Phys. A 119, 1431–1435 (2015). https://doi.org/10.1007/s00339-015-9116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9116-1

Keywords

Navigation