Skip to main content
Log in

Formation of Vacancy-Type Dislocation Loops in Hydrogen-Ion-Implanted Fe–Cr Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Fe–10 at.%Cr alloy was implanted with hydrogen ions at room temperature, followed by annealing at high temperatures. The annealing process made the defects develop into large dislocation loops. The nature of the dislocation loops formed after annealing was studied by the evolution of loops under in situ electron irradiation in high-voltage electron microscope. It indicated that only interstitial-type loops were observed when annealed at 550 °C and below, but vacancy-type loops started to form at the temperature higher than 600 °C. According to the previous study of our group, the presence of chromium element made the formation temperature of vacancy-type loops higher than that in pure iron. The effect of alloying elements on the formation temperature of the vacancy-type loops was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Soisson, T. Jourdan, Acta Mater. 103, 870 (2016)

    Article  Google Scholar 

  2. S. Kano, H.L. Yang, R. Suzue et al., Nucl. Mater. Energy 9, 331 (2016)

    Article  Google Scholar 

  3. A. Prokhodtseva, B. Décamps, A. Ramar et al., Acta Mater. 61, 6958 (2013)

    Article  Google Scholar 

  4. M. Hernández-Mayoral, C. Heintze, E. Oñorbe, J. Nucl. Mater. 474, 88 (2016)

    Article  Google Scholar 

  5. D. Gelles, J. Nucl. Mater. 283–287, 838 (2000)

    Article  Google Scholar 

  6. R. Schäublin, J. Henry, Y. Dai, C R Phys. 9, 389 (2008)

    Article  Google Scholar 

  7. Z. Chang, D. Terentyev, N. Sandberg et al., Nucl. Instrum. Methods Phys. Res. B 352, 81 (2015)

    Article  Google Scholar 

  8. J. Gao, D. Yufeng, S. Ohnuki, F. Wan, J. Nucl. Mater. 481, 81 (2016)

    Article  Google Scholar 

  9. V.I. Dubinko, S.A. Kotrechko, V.F. Klepikov et al., Def. Solids 164, 647 (2009)

    Article  Google Scholar 

  10. B. Yao, D.J. Edwards, R.J. Kurtz, J. Nucl. Mater. 434, 402 (2013)

    Article  Google Scholar 

  11. M. Hernández-Mayorala, Z. Yao, M.L. Jenkins, Philos. Mag. 88, 2881 (2008)

    Article  Google Scholar 

  12. J. Gao, L. Cui, F. Wan, Mater. Charact. 111, 1 (2016)

    Article  Google Scholar 

  13. B.L. Eyre, A.F. Bartlett, Philos. Mag. 12, 261 (1965)

    Article  Google Scholar 

  14. B.C. Masters, Philos. Mag. 11, 881 (1965)

    Article  Google Scholar 

  15. I.M. Robertson, W.E. King, M.A. Kirk, Scr. Metall. 18, 317 (1984)

    Article  Google Scholar 

  16. Z. Yao, M.L. Jenkins, M. Hernández-Mayoral et al., Philos. Mag. 90, 4623 (2010)

    Article  Google Scholar 

  17. B.D. Wirth, G.R. Odette, D. Maroudas, J. Nucl. Mater. 276, 33 (2000)

    Article  Google Scholar 

  18. Z. Chang, D. Terentyev, N. Sandberg et al., J. Nucl. Mater. 461, 221 (2015)

    Article  Google Scholar 

  19. H. Watanabe, S. Masaki, S. Masubuchi et al., J. Nucl. Mater. 439, 268 (2013)

    Article  Google Scholar 

  20. J. Chen, P. Jung, W. Hoffelner, Acta Mater. 56, 250 (2008)

    Article  Google Scholar 

  21. D. Brimbal, B. Décamps, J. Henry et al., Acta Mater. 64, 391 (2014)

    Article  Google Scholar 

  22. N. Hashimoto, S. Sakuraya, J. Tanimoto et al., J. Nucl. Mater. 445, 224 (2014)

    Article  Google Scholar 

  23. M. Horiki, T. Yoshiie, M. Iseki et al., J. Nucl. Mater. 271&272, 256 (1999)

    Article  Google Scholar 

  24. P.P. Liu, Y.M. Zhu, M.Z. Zhao et al., Fusion Eng. and Des. 95, 20 (2015)

    Article  Google Scholar 

  25. F. Wan, Q. Zhan, Y. Long et al., J. Nucl. Mater. 455, 253 (2014)

    Article  Google Scholar 

  26. Y. Huang, F. Wan, X. Xiao et al., Fusion Eng. Des. 85, 2203 (2010)

    Article  Google Scholar 

  27. F. Wan, S. Ohnuki, H. Takahashi et al., Philos. Mag. A 53, L21 (1986)

    Article  Google Scholar 

  28. R.E. Stoller, M.B. Toloczko, G.S. Was et al., Nucl. Instrum. Methods Phys. Res. B 310, 75 (2013)

    Article  Google Scholar 

  29. H. Föll, M. Wilkens, Phys. Stat. Solidi 31, 519 (1975)

    Article  Google Scholar 

  30. M. Kiritani, Ultramicroscopy 39, 135 (1991)

    Article  Google Scholar 

  31. P.P. Liu, J.W. Bai, F.R. Wan et al., J. Nucl. Mater. 423, 47 (2012)

    Article  Google Scholar 

  32. M.R. Gilbert, Z. Yao, M.A. Kirk et al., J. Nucl. Mater. 386–388, 36 (2009)

    Article  Google Scholar 

  33. Z. Yao, M. Hernández Mayoral, M.L. Jenkins et al., Philos. Mag. 88, 2851 (2008)

    Article  Google Scholar 

  34. M.L. Jenkins, C.A. English, B.L. Eyer, Philos. Mag. 38, 97 (1978)

    Article  Google Scholar 

  35. W. Jäger, M. Wilkens, Phys. Stat. Solidi 32, 89 (1975)

    Article  Google Scholar 

  36. X. Yi, M.L. Jenkins, M. Bricenoa et al., Philos. Mag. 93, 1715 (2013)

    Article  Google Scholar 

  37. M. Horiki, S. Arai, Y. Satoh, M. Kiritani, J. Nucl. Mater. 255, 165 (1998)

    Article  Google Scholar 

  38. M.J. Aliaga, R. Schäublin, J.F. Löffler et al., Acta Mater. 101, 22 (2015)

    Article  Google Scholar 

  39. T. Kato, H. Takahashi, M. Izumiya, J. Nucl. Mater. 189, 167 (1992)

    Article  Google Scholar 

  40. M.J. Hackett, R. Najafabadi, G.S. Was, J. Nucl. Mater. 389, 279 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51471026) The authors gratefully acknowledge the High-Voltage Electron Microscope Laboratory in Hokkaido University, Japan. The help and suggestions from Professor Naoyuki Hashimoto were highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa-Rong Wan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YF., Cui, LJ., Han, WT. et al. Formation of Vacancy-Type Dislocation Loops in Hydrogen-Ion-Implanted Fe–Cr Alloy. Acta Metall. Sin. (Engl. Lett.) 32, 566–572 (2019). https://doi.org/10.1007/s40195-018-0807-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0807-4

Keywords

Navigation