Skip to main content
Log in

Ionic ac and dc conductivities of NaCrP2O7 compound

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The NaCrP2O7 compound was prepared by the solid-state reaction method. The formation of a single-phase material was confirmed by the X-ray diffraction studies and found to be a monoclinic system. The electrical properties of this compound have been measured in the temperature range from 523 to 673 K and the frequency range from 209 Hz to 5 MHz. The Nyquist plots are well fitted to an equivalent circuit consisting of a series of combination of grains and grain boundary elements. The ac conductivity of NaCrP2O7 has been analyzed as a function of temperature and frequency. The scaling behavior of the imaginary part of the complex modulus suggests that the relaxation describes the same mechanism at various temperatures. The conductivity and modulus formalisms provide nearly the same activation energies for electrical relaxation of mobile ions suggesting that the ion transport is probably due to a hopping mechanism dominated by the motion of the monovalent ions Na+ along tunnels presented in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Daidouh, C. Durio, C. Picoa, M.L. Veiga, N. Chouaibi, A. Ouassini, Solid State Sci. 4, 541 (2002)

    ADS  Google Scholar 

  2. M. Mahendra, S.P. Madhu, B.H. Doreswamy, G.S. Gopalakrishna, M.A. Sridhar, J. Shashidhara Prasad, K.G. Ashamanjari, Mater. Res. Bull. 38, 1309 (2003)

    Google Scholar 

  3. N. El Khayati, J. Rodríguez-Carvajal, F. Bourée, T. Roisnel, R. Cherkaoui, A. Boutfessi, A. Boukhari, Solid State Sci. 4, 1273 (2002)

    ADS  Google Scholar 

  4. Y. Zhang, Y. Liu, S. Fu, F. Guo, Y. Qian, Bull. Chem. Soc. Jpn 79, 270 (2006)

    Google Scholar 

  5. R. Ternane, M. Ferid, Y. Guyot, M. Trabelsi-Ayadi, G. Boulon, J. Alloys Compd. 464, 327 (2008)

    Google Scholar 

  6. N. Dridi, A. Boukhari, J.M. Réau, E. Arbib, E.M. Holt, Mater. Lett. 47, 212 (2001)

    Google Scholar 

  7. R. Pang, C. Li, L. Jiang, Q. Su, J. Alloys Compd. 471, 364 (2009)

    Google Scholar 

  8. A. Daidouh, M.L. Veiga, C. Pico, M. Martinez-Ripoll, Acta Cryst. C 53, 167 (1997)

    Google Scholar 

  9. S.R.S. Prabaharan, M.S. Michael, S. Radhakrishna, C. Julien, J. Mater. Chem. 7, 1791 (1997)

    Google Scholar 

  10. L. Bohaty, J. Liebertz, Zeitschrift fur Kristallographie 161, 53 (1982)

    ADS  Google Scholar 

  11. J. Belkouch, L. Monceaux, E. Bordes, P. Courtine, Mater. Res. Bull. 30, 149 (1995)

    Google Scholar 

  12. R. Said, B. Louati, K. Guidara, Ionics 20, 209 (2014)

    Article  Google Scholar 

  13. B.S. Parajon-Costa, R.C. Mercader, E.J. Baran, J. Phys. Chem. Solid 74, 354 (2013)

    ADS  Google Scholar 

  14. A. Ben Rhaiem, S. Chouaib, K. Guidara, Ionics 16, 455 (2010)

    Article  Google Scholar 

  15. P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhury, Adv. Mater. Lett. 3, 8 (2012)

    Google Scholar 

  16. E. Barsoukov, J. Ross, Macdonald, impedance spectroscopy theory, experiment and applications, 2nd edn. (Wiley, New York, 2005), p. 14

    Book  Google Scholar 

  17. U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21 (2010)

    ADS  Google Scholar 

  18. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Chem. Phys. 106, 193 (2007)

    Google Scholar 

  19. R. Ben Said, B. Louati, K. Guidara, S. Kamoun, Ionics 14, 1 (2014)

    Google Scholar 

  20. A. Jarboui, A. Oueslati, K. Adil, K. Guidara, F. Hlel, Ionics 17, 145 (2011)

    Article  Google Scholar 

  21. K. Saidi, S. Kamoun, H. Ferid Ayedi, M. Arous, J. Phys. Chem. Solid 74, 1560 (2013)

    ADS  Google Scholar 

  22. A. Oueslati, I. Chaabene, K. Adil, F. Hlel, J. chem. 2013, 10 (2013)

    Google Scholar 

  23. N. Hannachi, I. Chaabane, K. Guidara, A. Bulou, F. Hlel, Mater. Sci. Eng. B 172, 24 (2010)

    Google Scholar 

  24. S. Khadhraouia, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Phys. Chem. Solid 574, 290 (2013)

    Google Scholar 

  25. M. Hamdi, B. Louati, A. Lafond, C. Guillot-Deudon, B. Chrif, K. Khirouni, M. Gargouri, S. Jobic, F. Hlel, J. Alloys Compd. 620, 434 (2014)

    Google Scholar 

  26. R. Elwej, M. Hamdi, N. Hannachi, F. Hlel, Mater. Res. Bull. 62, 42 (2014)

    Google Scholar 

  27. F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider, E. Rentschler, Solid State Commun. 128, 63 (2003)

    ADS  Google Scholar 

  28. S. Nasri, M. Megdiche, K. Guidara, M. Gargouri, Ionics 19, 1921 (2003)

    Article  Google Scholar 

  29. M. Megdiche, C. Perrin-pellegrino, M. Gargouri, J. Alloys Compd. 584, 209 (2014)

    Google Scholar 

  30. R.M. Hill, A.K. Jonscher, J. Non-Cryst. Solid 32, 53 (1979)

    ADS  Google Scholar 

  31. R.H. Chen, R.Y. Chang, S.C. Shern, J. Phys. Chem. Solid 63, 2069 (2002)

    ADS  Google Scholar 

  32. H. Mahamoud, B. Louati, F. Hlel, K. Guidara, Bull. Mater. Sci. 34, 1069 (2011)

    Google Scholar 

  33. T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 84, 310 (2000)

    ADS  Google Scholar 

  34. A. Ghosh, A. Pan, Phys. Rev. Lett. 84, 2188 (2000)

    ADS  Google Scholar 

  35. A. Pan, A. Ghosh, Phys. Rev. B 66, 012301 (2002)

    ADS  Google Scholar 

  36. M. Pant, D. K. Kanchan, N. Gondaliya, Mater. Chem. Phys. 115, 98 (2009)

  37. M. Haj Lakhdar, B. Ouni, M. Amlouk, Mater. Sci. Semi cond. Process. 19, 32 (2014)

    Google Scholar 

  38. M. Sural, A. Ghosh, Solid State Ion. 130, 259 (2000)

    Google Scholar 

  39. S. Ghosh, A. Ghosh, Solid State Ion. 149, 67 (2002)

    Google Scholar 

  40. A. Ghosh, J. Appl. Phys. 66, 2425 (1989)

    ADS  Google Scholar 

  41. K. Karoui, A. Ben Rhaiem, K. Guidara, Phys. B 407, 489 (2012)

    ADS  Google Scholar 

  42. B. Tiwari, R.N.P. Choudhary, J. Alloys Compd. 493, 1 (2010)

    Google Scholar 

  43. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    Google Scholar 

  44. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    ADS  Google Scholar 

  45. G. Williams, D.C. Watts, Trans. Faraday Soc. 67, 1971 (1970)

    Google Scholar 

  46. M.D. Migahed, N.A. Bakr, M.I. Abdel-Hamid, O. EL-Hannafy, M. El-Nimr, J. Appl. Polym. Sci. 59, 655 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassi, M., Oueslati, A. & Gargouri, M. Ionic ac and dc conductivities of NaCrP2O7 compound. Appl. Phys. A 119, 763–771 (2015). https://doi.org/10.1007/s00339-015-9025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9025-3

Keywords

Navigation