Skip to main content
Log in

An investigation on the hole quality during picosecond laser helical drilling of stainless steel 304

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Precision drilling with ultra-short pulse lasers (e.g., picosecond and femtosecond) has been advocated to significantly improve the quality of the micro-holes with reduced recast layer thickness and no heat-affected zone. However, a combination of high-power picosecond laser with helical drilling strategy in laser drilling has rarely been reported in previous studies. In the present study, a series of micro-holes with circular, triangular, rectangular, and rhombic shapes (diameter 0.6 mm) were manufactured on stainless steel 304 using a newly developed laser drilling system which incorporated a picosecond laser and a high-speed laser beam rotation apparatus into a five-axis positioning platform. The quality of the helical drilled holes, e.g., recast layer, micro-crack, circularity, and conicity, were evaluated using an optical microscope, an optical interferometer, and a scanning electron microscope. In addition, the microstructure of the samples was investigated following etching treatment. It was demonstrated that the entrance ends, the exit ends, and the side walls of the micro-holes were quite smooth without accumulation of spattering material and formation of recast layer and micro-crack. No tapering phenomenon was observed, and the circularity of the holes was fairly good. There was no distinctive difference with regard to the microstructure between the edges of the holes and the bulk material. Picosecond laser helical drilling can be an effective technique for manufacturing of micro-holes with very high quality. The development of high-power picosecond laser would promote picosecond laser drilling to be more industrial relevance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Cheng, W. Perrie, M. Sharp, S.P. Edwardson, N.G. Semaltianos, G. Dearden, K.G. Watkins, Appl. Phys. A 95, 739 (2009)

    Article  ADS  Google Scholar 

  2. R.S. Bunker, J. Heat Trans. T ASME 127, 441 (2005)

    Article  Google Scholar 

  3. X.D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J.S. Liu, F. Dausinger, Opt. Laser Technol. 41, 148 (2009)

    Article  ADS  Google Scholar 

  4. J.K.M. Garofano, H.L. Marcus, M. Aindow, Scripta Mater. 61, 943 (2009)

    Article  Google Scholar 

  5. H.K. Sezer, L. Li, M. Schmidt, A.J. Pinkerton, B. Anderson, P. Williams, Int. J. Mach. Tool Manuf. 46, 1972 (2006)

    Article  Google Scholar 

  6. X.Y. Wang, G.K.L. Ng, Z. Liu, L. Li, L. Bradley, Thin Solid Films 453–454, 84 (2004)

    Article  Google Scholar 

  7. K.H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, M. Schmidt, Phys. Procedia 12, 230 (2011)

    Article  ADS  Google Scholar 

  8. B. Kang, G.W. Kim, M.Y. Yang, S.H. Cho, J.W. Park, Opt. Laser. Eng. 50, 1817 (2012)

    Article  Google Scholar 

  9. H. Zhang, J.W. Xu, J.S. Zhao, G.R. Hua, Adv. Sci. Lett. 4, 2071 (2011)

    Article  Google Scholar 

  10. X.C. Chen, L.F. Ji, Y. Bao, Y.J. Jiang, J. Eur. Ceram. Soc. 32, 2203 (2012)

    Article  Google Scholar 

  11. G. Kamlage, T. Bauer, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 307 (2003)

    Article  ADS  Google Scholar 

  12. S. Juodkazis, H. Okuno, N. Kujime, S. Matsuo, H. Misawa, Appl. Phys. A 79, 1555 (2004)

    ADS  Google Scholar 

  13. C. Fohl, D. Breitling, F. Dausinger, Proc. SPIE 5121, 271 (2003)

    ADS  Google Scholar 

  14. A. Ancona, D. Nodop, J. Limpert, S. Nolte, A. Tunnermann, Appl. Phys. A 94, 19 (2009)

    Article  ADS  Google Scholar 

  15. J. Kaspar, A. Luft, S. Nolte, M. Will, E. Beyer, J. Laser Appl. 18, 85 (2006)

    Article  Google Scholar 

  16. F. Dausinger, RIKEN Rev 50, 77 (2003)

    Google Scholar 

  17. S. Leigh, K. Sezer, L. Li, C. Grafton-Reed, M. Cuttell, Proc. IMechE Part B J. Eng. Manuf. 224, 1005 (2009)

    Article  Google Scholar 

  18. S. Bandyopadhyay, J.K. Sarin, Sundar, G. Sundararajan, S.V. Joshi. J. Mater. Process. Technol. 127, 83 (2002)

    Article  Google Scholar 

  19. W.Q. Hu, Y.C. Shin, G.B. King, J. Manuf. Sci. E T ASME 132, 011009 (2010)

    Article  Google Scholar 

  20. H. Huang, L.M. Yang, J. Liu, Proc. SPIE 8607, 86070K (2013)

    Google Scholar 

  21. F. Dausinger, H. Hugel, V. Konov, Proc. SPIE 5147, 106 (2003)

    ADS  Google Scholar 

  22. D.K.Y. Low, L. Li, A.G. Corfe, J. Mater. Process. Technol. 118, 179 (2001)

    Article  Google Scholar 

  23. W.T. Chien, S.C. Hou, Int. J. Adv. Manuf. Technol. 33, 308 (2007)

    Article  Google Scholar 

  24. K.H. Leitz, H. Koch, A. Otto, M. Schmidt, Appl. Phys. A 106, 885 (2012)

    Article  ADS  Google Scholar 

  25. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  26. L. Jiang, H.L. Tsai, J Heat Trans T ASME 127, 1167 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (Grant number 2011CB013004) and National Natural Science Foundation of China (Grant numbers 51375008, 51005130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Di, J., Zhou, M. et al. An investigation on the hole quality during picosecond laser helical drilling of stainless steel 304. Appl. Phys. A 119, 745–752 (2015). https://doi.org/10.1007/s00339-015-9023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9023-5

Keywords

Navigation