Skip to main content
Log in

Numerical simulation of process dynamics during laser beam drilling with short pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the last years, laser beam drilling became increasingly important for many technical applications as it allows the contactless production of high quality drill holes. So far, mainly short laser pulses are of industrial relevance, as they offer a good compromise between precision and efficiency and combine high ablation efficiency with low thermal damage of the workpiece. Laser beam drilling in this pulse length range is still a highly thermal process. There are two ablation mechanisms: evaporation and melt expulsion. In order to achieve high quality processing results, a basic process understanding is absolutely necessary. Yet, process observations in laser beam drilling suffer from both the short time scales and the restricted accessibility of the interaction zone. Numerical simulations offer the possibility to acquire additional knowledge of the process as they allow a direct look into the drill hole during the ablation process. In this contribution, a numerical finite volume multi-phase simulation model for laser beam drilling with short laser pulses shall be presented. The model is applied for a basic study of the ablation process with μs and ns laser pulses. The obtained results show good qualitative correspondence with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Preuss, E. Matthias, M. Stuke, Appl. Phys. A 59 (1994)

  2. A. Ruf, Modellierung des Perkussionsbohrens von Metallen mit kurz- und ultrakurz gepulsten Lasern (Herbert Utz Verlag, Munich, 2004)

    Google Scholar 

  3. F. Dausinger, LTJ Nr. 1 (2004)

  4. D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 5339 (2005)

  5. C.Y. Chien, M.C. Gupta, Appl. Phys. A 81 (2005)

  6. A. Michalowski, D. Walter, F. Dausinger, J. Laser Micro Nanoeng. 3(3) (2008)

  7. T. Lehecka, A. Mostovych, J. Thomas, Appl. Phys. A 92 (2008)

  8. T. Bauer, J. Radtke, J. König, in Proceedings of the LAMP 2009 (2009)

    Google Scholar 

  9. J. König, T. Bauer, Proc. SPIE 7925 (2011)

  10. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61 (1995)

  11. M. Dirscherl, Ultrakurzpulslaser—Grundlagen und Anwendungen (Bayerisches Laserzentrum, Erlangen, 2005)

    Google Scholar 

  12. K.-H. Leitz, H. Koch, A. Otto, M. Schmidt, in Proceedings of the LIM 2009 (2009)

    Google Scholar 

  13. S. Preuss, M. Späth, Y. Zhang, M. Stuke, Appl. Phys. Lett 62(23) (1993)

  14. A. Schoonderbeek, C.A. Biesheuvel, R.M. Hofstra, K.-J. Boller, J. Meijer, Appl. Phys. A 80 (2005)

  15. A. Michalowski, D. Walter, P. Berger, F. Dausinger, in Proceedings of the LIM 2007 (2007)

    Google Scholar 

  16. D. Walter, A. Michalowski, R. Gauch, F. Dausinger, in Proceedings of the LIM 2007 (2007)

    Google Scholar 

  17. S. Amoruso, R. Bruzesse, C. Pagano, X. Wang, Appl. Phys. A 89 (2007)

  18. A. Michalowski, R. Weber, R. Graf, in Proceedings of the LIM 2009 (2009)

    Google Scholar 

  19. S. Döring, S. Richter, S. Nolte, A. Tünnermann, Opt. Express 19(18) (2010)

  20. S. Döring, S. Richter, S. Nolte, A. Tünnermann, Proc. SPIE 7920 (2011)

  21. S. Döring, S. Richter, A. Tünnermann, S. Nolte, Appl. Phys. A 105 (2011)

  22. R.G. Evans, A.R. Bell, B.J. MacGowan, J. Phys. D., Appl. Phys. 15 (1982)

  23. C.L. Chan, J. Mazumder, J. Appl. Phys. 62(11) (1987)

  24. C.D. Boley, in International Conference on Applications of Lasers in Electro-Optics (1994)

    Google Scholar 

  25. M.F. Modest, Int. J. Heat Mass Transf. 39(2) (1996)

  26. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 78(7) (1995)

  27. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 79(9) (1996)

  28. R.K. Ganesh, W.W. Bowley, R.R. Bellantone, H. Yukap, J. Comput. Phys. 125 (1996)

  29. R.K. Ganesh, A. Faghri, Y. Hahn, Int. J. Heat Mass Transf. 40(14) (1997)

  30. A. Ruf, D. Breitling, P. Berger, F. Dausinger, H. Hügel, Proc. SPIE 4830 (2003)

  31. A. Ruf, F. Berger, F. Dausinger, H. Hügel, in Proceedings of the LIM 2003 (2003)

    Google Scholar 

  32. G. Dumitru, V. Romano, H.P. Weber, Appl. Phys. A 79 (2004)

  33. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39 (1981)

  34. O. Ubbnik, Numerical prediction of two fluid systems with sharp interfaces, Ph.D. thesis, University of London, 1997

  35. J.M. Dowden, The Mathematics of Thermal Modeling (Chapman & Hall/CRC, Boca Raton, 2001)

    Book  MATH  Google Scholar 

  36. M.O. Bristeau, R. Glowinski, J. Priaux, Comput. Phys. Rep. 6 (1987)

  37. J.M. Dowden, The Theory of Laser Material Processing (Springer, Berlin, 2009)

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding of the project “Gezielte lokale Sub-100-nm-Strukturierung durch ultrakurze Laserpulse mithilfe von mit einer optischen Pinzette positionierten Kolloiden unter Ausnutzung von Nahfeldeffekten” within the DFG priority programme 1327 “Optisch erzeugte Sub-100-nm Strukturen für biomedizinische und technische Applikationen” and the funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) in the framework of the excellence initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Leitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitz, KH., Koch, H., Otto, A. et al. Numerical simulation of process dynamics during laser beam drilling with short pulses. Appl. Phys. A 106, 885–891 (2012). https://doi.org/10.1007/s00339-011-6702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6702-8

Keywords

Navigation