Skip to main content
Log in

Characterization of natural resin materials using water adsorption and various advanced techniques

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A physicochemical characterization of natural raw resin material was evaluated and reported. The studied material is a natural resin, a natural product from pinus halepensis trees which is collected from the forests of Chalkidiki region of North Greece. The plurality of this product combined with its special property of removing water from commercial liquid fuels commands the detailed physicochemical characterization of this material. In particular, various techniques, such as water adsorption at 22 °C, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction, were used in order to evaluate the structural and surface properties of the material. The water adsorption isotherm was also measured and fitted using the Guggenheim, Anderson and De Boer model in order to correlate the water activity characteristics. In addition, the kinetics of the adsorption was also fitted with good accuracy using the exponential Chapman model. Furthermore, as the results show, the natural resin presents good thermal characteristics. Finally, the studied material presents efficient water adsorption properties, up to 246.8 mmol/g, and it can be proposed as a promising dehydration material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.R. Lewis, C. Gagg, Forensic Polymer Engineering: why Polymer Products Fail in Service (Woodhead/CRC Press, Boca Raton, Florida, USA, 2010)

  2. S. Mecking, Nature or petrochemistry? Biologically degradable materials. Angew. Chem. Int. Ed. 43, 1078–1085 (2004)

    Article  Google Scholar 

  3. V. Sharma, P.P. Kundu, Addition polymers from natural oils—a review. Prog. Polym. Sci. 31, 983–1008 (2006)

    Article  Google Scholar 

  4. I. Jantam, A.S. Ahmad, Oleoresins of three Pinus species from Malaysian pine plantations. ASEAN review of biodiversity and environmental conservation (1999)

  5. K.C. Silva Rodrigues-Corrêa, J.C. Lima, A.G. Fett-Neto, Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food Energy Secur. 1, 81–93 (2012)

    Article  Google Scholar 

  6. M.J. Lombardero, M.P. Ayres, P.L. Lorio, J.J. Ruel, Environmental effects on constitutive and inducible resin defenses of Pinus taeda. Ecol. Lett. 3, 329–339 (2000)

    Article  Google Scholar 

  7. Z. Wang, M.M. Calderon, M.G. Carandang, Effects of resin tapping on optimal rotation age of pine plantation. J. For. Econ. 11, 245–260 (2006)

    Google Scholar 

  8. J.J.W. Coppen, J.M. Robinson, L.J. Mullin, Composition of xylem resin from five Mexican and Central American Pinus species growing in Zimbabwe. Phytochemistry 27, 1731–1734 (1998)

    Article  Google Scholar 

  9. J.J.W. Coppen, C. Gay, D.J. James, J.M. Robinson, N. Supriana, Variability in xylem resin composition amongst natural populations of Indonesian Pinus merkusii. Phytochemistry 33, 129–136 (1993)

    Article  Google Scholar 

  10. S. Turtola, A.M. Manninen, R. Rikala, P. Kainulainen, Drought stress alters the concentration of wood terpenoids in scots pine and Norway spruce seedlings. J. Chem. Ecol. 29, 1981–1995 (2003)

    Article  Google Scholar 

  11. M. Cannac, T. Barboni, L. Ferrat, A. Bighelli, V. Castola, J. Costa, D. Treculd, F. Morandinia, V. Pasqualinia, Oleoresin flow and chemical composition of Corsican pine (Pinus nigra subsp. laricio) in response to prescribed burnings. For. Ecol. Manag. 257, 1247–1254 (2009)

    Article  Google Scholar 

  12. D.T. Tingey, M. Manning, L.C. Grothaus, W.F. Burns, Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 65, 797–801 (1980)

    Article  Google Scholar 

  13. J. Peñuelas, J. Llusià, Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ. Exp. Bot. 42, 61–68 (1999)

    Article  Google Scholar 

  14. A.G. Ferreira, C.S. Fior, S.C.J. Gualtieri, Oleoresin yield of Pinus elliottii Engelm seedlings. Braz. J. Plant Physiol. 23, 313–316 (2011)

    Article  Google Scholar 

  15. N.Y. Yang, L. Liu, W.W. Tao, J.A. Duan, L.J. Tian, Diterpenoids from Pinus massoniana resin and their cytotoxicity against A431 and A549 cells. Phytochemistry 71, 1528–1533 (2010)

    Article  Google Scholar 

  16. X.M. Hu, W.K. Zhang, L.R. Song, L. Hu, G.Z. Zhang, Z.W. Xie et al., Chinese Materia Medica, vol. 2 (Shanghai Science and Technology Press, Shanghai, 1998), pp. 303–305

    Google Scholar 

  17. R. Tanaka, H. Tokuda, Y. Ezaki, Cancer chemopreventive activity of “rosin” constituents of Pinus spez. and their derivatives in two-stage mouse skin carcinogenesis test. Phytomedicine 15, 985–992 (2008)

    Article  Google Scholar 

  18. G. Topçu, R. Erenler, O. Çakmak, C.B. Johansson, C. Çelik, H.B. Chai, J.M. Pezzuto, Diterpenes from the berries of Juniperus excelsa. Phytochemistry 50, 1195–1199 (1999)

    Article  Google Scholar 

  19. P. Mellanen, T. Petänen, J. Lehtimäki, S. Mäkelä, G. Bylund, B. Holmbom, E. Mannila, A. Oikari, R. Santti, Wood-derived estrogens: studiesin vitrowith breast cancer cell lines andin vivoin trout. Toxicol. Appl. Pharmacol. 136, 381–388 (1996)

    Article  Google Scholar 

  20. G. Saxena, C.R. Tudan, A. Merzouk, Tricyclic terpenes of the family of abietic acid as RANTES receptor ligands. US patent, 2003125380 (2003)

  21. J. Rubio, J.S. Calderon, A. Flores, Trypanocidal activity of oleoresin and terpenoids isolated from Pinus oocarpa. J. Biosci. 60, 711–716 (2005)

    Google Scholar 

  22. E. Smith, E. Williamson, M. Zloh, Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother. Res. 19, 538–542 (2005)

    Article  Google Scholar 

  23. J. Bohlmann, C.I. Keeling, Terpenoid biomaterials. Plant J. 54, 656–669 (2008)

    Article  Google Scholar 

  24. Y. Zhao, J. Yang, B. Qin, Y. Li, Y. Sun, S. Su, M. Xian, Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl. Microbiol. Biotechnol. 90, 1915–1922 (2011)

    Article  Google Scholar 

  25. C.G. Tsanaktsidis, E.P. Favvas, A.A. Scaltsoyiannes, S.G. Christidis, E.X. Katsidi, A.V. Scaltsoyiannes, Natural resins and their application in antifouling fuel technology Part I: improving the physicochemical properties of diesel fuel using natural resin polymer as a removable additive. Fuel. Proc. Technol. 114, 135–143 (2013)

    Article  Google Scholar 

  26. K.P. Panetsos, Pinus halepensis (Mill.) Enzyklopädie der Holzgewächse. 18 (III-1), (1999), p.10

  27. R. Croteau, M.A. Johnson, Biosynthesis of terpenoid wood extractives, in Biosynthesis and Biodegradation of Wood Components, ed. by T. Higuchi (Academic Press, Orlando, FL, 1985), pp. 379–439

    Chapter  Google Scholar 

  28. G.Th. Tsoumis, Harvesting forest products. (Thessaloniki, 1978), pp 135–152

  29. D. Moulalis, Variation of resin yield of Pinus halepensis in Kassandra Chalkidiki. Scientific Annals of the School Agriculture and Forestry, (in Greek, English abstract, 1981), vol. 24–Annex

  30. N. Verlet, Commercial aspects, in Volatile oil crops: their biology biochemistry and production, eds. R.K.M. Hay, P.G. Waterman (Longman Scientific and Technical, Essex, UK, 1993), pp. 137–174

  31. C. Karanikas, V. Walker, A. Scaltsoyiannes, G. Compte, C. Betrand, High vs. low yielding oleoresin Pinus halepensis Mill. trees GC terpenoids profiling as diagnostic tool. Anna. For. Sci. 67, 412–419 (2010)

    Article  Google Scholar 

  32. C.G. Tsanaktsidis, S.G. Christidis, E.P. Favvas, A novel method for improving the physicochemical properties of diesel and jet fuel using polyaspartate polymer additives. Fuel 104, 155–162 (2013)

    Article  Google Scholar 

  33. E.P. Favvas, K.L. Stefanopoulos, S.K. Papageorgiou, ACh. Mitropoulos, In situ small angle X-ray scattering and benzene adsorption in carbon hollow fiber membranes. Adsorption 19, 225–233 (2013)

    Article  Google Scholar 

  34. G. Trovati, E.A.P. Sanches, S.C. Neto, Y.P. Mascarenhas, G.O. Chierice, Characterization of polyurethane resins by FTIR, TGA, and XRD. J. Appl. Polym. Sci. 115, 263–268 (2010)

    Article  Google Scholar 

  35. A.D. Roman-Gutierrez, S. Guilbert, B. Cuq, Distribution of water between wheat flour components: a dynamic water vapour adsorption study. J. Cereal. Sci. 36, 347–355 (2002)

    Article  Google Scholar 

  36. D.L. Chapman, A contribution to the theory of electrocapillarity. Philos. Mag. 25, 475–481 (1913)

    Article  MATH  Google Scholar 

  37. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)

    Article  Google Scholar 

  38. A.J. Fletcher, Y. Yϋzak, K.M. Thomas, Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004 (2006)

    Article  Google Scholar 

  39. S. Komarneni, R. Pidugu, V.C. Menon, Water adsorption and desorption isotherms of silica and alumina mesoporous molecular sieves. J. Porous Mater. 3, 99–106 (1996)

    Article  Google Scholar 

  40. R.W. Mooney, A.G. Keenan, L.A. Wood, Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory. J. Am. Chem. Soc. 74, 1367–1371 (1952)

    Article  ADS  Google Scholar 

  41. I. Bravo-Osuna, C. Ferrero, M.R. Jiménez-Castellanos, Water sorption-desorption behaviour of methyl methyl methacrylate-starch copolymers: effect of hydrophobic graft and drying method. Eur. J. Pharm. Biopharm. 59, 537–548 (2005)

    Article  Google Scholar 

  42. F. Caturla, M. Molina-Sabio, F. Rodriguez-Reinoso, Adsorption–desorption of water vapor by natural and heat-treated sepiolite in ambient air. Appl. Clay Sci. 15, 367–380 (1999)

    Article  Google Scholar 

  43. H. Chen, M. Miao, X. Ding, Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos. A Appl. Sci. Manuf. 40, 2013–2019 (2009)

    Article  Google Scholar 

  44. J.N. Coupland, N.B. Shaw, F.J. Monahan, E.D. O’Riordan, M. O’Sullivan, Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. J. Food Eng. 43, 25–30 (2000)

    Article  Google Scholar 

  45. E. Ayranci, Moisture sorption of cellulose based edible films. Food/Nahrung 40, 274–276 (1996)

    Article  Google Scholar 

  46. M.S. Chinnan, H.J. Park, Effect of plasticizer level and temperature on water vapor transmission of cellulose-based edible films. J. Food Proc. Eng. 18, 417–429 (1995)

    Article  Google Scholar 

  47. A.B. Dias, C.M.O. Mϋller, F.D.S. Larotonda, J.B. Laurindo, Biodegradable films based on rice starch and rice flour. J. Cereal. Sci. 51, 213–219 (2010)

    Article  Google Scholar 

  48. S. Mali, L.S. Sakanaka, F. Yamashita, M.V.E. Grossmann, Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 60, 283–289 (2005)

    Article  Google Scholar 

  49. J. Su, A.C. Lua, Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton® polyimide. J. Membr. Sci. 305, 263–270 (2007)

    Article  Google Scholar 

  50. R. Imhof, X. Xie, G. Calzaferri, In situ attenuated total reflection FTIR investigations of thin water films in the silanization of ZnSe and Si. Spectrochim. Acta A 53, 981–989 (1997)

    Article  ADS  Google Scholar 

  51. D. Scalarone, M. Lazzari, O. Chiantore, Ageing behaviour and pyrolytic characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J. Anal. Appl. Pyrolysis 64, 345–361 (2002)

    Article  Google Scholar 

  52. J. Font, N. Salvadó, S. Butí, J. Enrich, Fourier transform infrared spectroscopy as a suitable technique in the study of the materials used in waterproofing of archaeological amphorae. Anal. Chim. Acta 598, 119–127 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

E.P. Favvas and A.Ch. Mitropoulos would like to thank the framework NSRF for the funding of the present work. The “NANOCAPILLARY” project (“Thalis” Framework) of the Eastern Macedonia and Thrace Institute of Technology is co-financed by Greece and the European Union in the frame of operational program “Education and lifelong learning investing in knowledge society,” Ministry of Education and Religious Affairs, Culture and Sports. NSRF 2007–2013. The authors would also like to thank Prof. A. Scaltsoyiannes for kindly providing the raw sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos P. Favvas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favvas, E.P., Kouvelos, E.P., Papageorgiou, S.K. et al. Characterization of natural resin materials using water adsorption and various advanced techniques. Appl. Phys. A 119, 735–743 (2015). https://doi.org/10.1007/s00339-015-9022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9022-6

Keywords

Navigation