Skip to main content
Log in

Optical properties of a-plane non-polar Zn1−x Mg x O/ZnO multiple quantum wells with different barrier compositions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical properties of a-plane non-polar Zn1−x Mg x O/ZnO multiple quantum wells (MQWs) with different barrier compositions have been investigated. It is found that the dominant photoluminescence (PL) emission at 16 K as well as at room temperature exhibits monotonous blue shift as Mg content in the barriers increases due to quantum confinement effect. Moreover, increasing the Mg content in the barriers improves carrier confinement efficiency as well as degrades the crystal quality of MQWs. In a-plane Zn0.85Mg0.15O/ZnO MQWs, exciton emission in the ZnO wells at 16 K is dominated by localized excitons (LEs) at 3.413 eV and free excitons (FEs) at 3.459 eV. Temperature-dependent PL spectra indicate that the intensity of the LE peak gradually decreases and the PL spectra become dominated by FE emissions at the temperature above 120 K. The behavior of LEs and FEs as the temperature increases is interpreted by the formation of potential minima in ZnO wells due to exciton localization. The deduced activation energy of 11 meV is in good agreement with quenching temperature of LEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Google Scholar 

  2. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    ADS  Google Scholar 

  3. K. Humme, Phys. Status Solidi B 56, 249 (1973)

    ADS  Google Scholar 

  4. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998)

    ADS  Google Scholar 

  5. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, K. Ohtani, H. Ohno, S.F. Chichibu, M. Kawasaki, Jpn. J. Appl. Phys. 44, L643 (2005)

    ADS  Google Scholar 

  6. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010)

    ADS  Google Scholar 

  7. J.S. Liu, C.X. Shan, H. Shen, B.H. Li, Z.Z. Zhang, L. Liu, L.G. Zhang, D.Z. Shen, Appl. Phys. Lett. 101, 011106 (2012)

    ADS  Google Scholar 

  8. W.I. Park, G.C. Yi, H.M. Jang, Appl. Phys. Lett. 79, 2022 (2001)

    ADS  Google Scholar 

  9. N.B. Chen, C.H. Sui, Mater. Sci. Eng. B 126, 16 (2006)

    Google Scholar 

  10. T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Semicond. Sci. Tech. 20, S78 (2005)

    ADS  Google Scholar 

  11. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 75, 980 (1999)

    ADS  Google Scholar 

  12. B.P. Zhang, B.L. Liu, J.Z. Yu, Q.M. Wang, C.Y. Liu, Y.C. Liu, Y. Segawa, Appl. Phys. Lett. 90, 132113 (2007)

    ADS  Google Scholar 

  13. M. Al-Suleiman, A. El-Shaer, A. Bakin, H.H. Wehmann, A. Waag, Appl. Phys. Lett. 91, 081911 (2007)

    ADS  Google Scholar 

  14. H.P. He, Y.Z. Zhang, Z.Z. Ye, H.H. Huang, X.Q. Gu, L.P. Zhu, B.H. Zhao, J. Phys. D Appl. Phys. 40, 5039 (2007)

    ADS  Google Scholar 

  15. H.H. Zhang, X.H. Pan, H.P. He, W. Chen, J.Y. Huang, P. Ding, B. Lu, Z.Z. Ye, J.G. Lu, L.X. Chen, C.L. Ye, Opt. Commun. 318, 37 (2014)

    ADS  Google Scholar 

  16. M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, P. Bigenwald, Phys. Rev. B 58, R13371 (1998)

    ADS  Google Scholar 

  17. S.H. Park, D. Ahn, Appl. Phys. Lett. 87, 253509 (2005)

    ADS  Google Scholar 

  18. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis, Phys. Rev. B 72, 241305 (2005)

    ADS  Google Scholar 

  19. T.S. Ko, T.C. Lu, L.F. Zhuo, W.L. Wang, M.H. Liang, H.C. Kuo, S.C. Wang, L. Chang, D.Y. Lin, J. Appl. Phys. 108, 073504 (2010)

    ADS  Google Scholar 

  20. Y. Li, X.H. Pan, Y.Z. Zhang, H.P. He, J. Jiang, J.Y. Huang, C.L. Ye, Z.Z. Ye, J. Appl. Phys. 112, 103519 (2012)

    ADS  Google Scholar 

  21. J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Deparis, C. Morhain, B. Vinter, Appl. Phys. Lett. 97, 081903 (2010)

    ADS  Google Scholar 

  22. G. Tabares, A. Hierro, B. Vinter, J.-M. Chauveau, Appl. Phys. Lett. 99, 071108 (2011)

    ADS  Google Scholar 

  23. L. Béaur, T. Bretagnon, B. Gil, A. Kavokin, T. Guillet, C. Brimont, D. Tainoff, M. Teisseire, J.-M. Chauveau, Phys. Rev. B 84, 165312 (2011)

    ADS  Google Scholar 

  24. L. Béaur, T. Bretagnon, C. Brimont, T. Guillet, B. Gil, D. Tainoff, M. Teisseire, J.-M. Chauveau, Appl. Phys. Lett. 98, 101913 (2011)

    ADS  Google Scholar 

  25. H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 91, 6457 (2002)

    ADS  Google Scholar 

  26. T. Makino, N.T. Tuan, H.D. Sun, C.H. Chi, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, T. Suemoto, H. Akiyama, M. Baba, S. Saito, T. Tomita, H. Koinuma, Appl. Phys. Lett. 78, 1979 (2001)

    ADS  Google Scholar 

  27. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, J. Appl. Phys. 86, 3721 (1999)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant Nos. 51302244 and 91333203, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ13E020001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Pan, X.H., Ye, Z.Z. et al. Optical properties of a-plane non-polar Zn1−x Mg x O/ZnO multiple quantum wells with different barrier compositions. Appl. Phys. A 119, 647–651 (2015). https://doi.org/10.1007/s00339-015-9008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9008-4

Keywords

Navigation