Skip to main content
Log in

Preparation and characterization of sol–gel-derived n-ZnO thin film for Schottky diode application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

n-ZnO film has been formed on p-Si substrate using sol–gel spin-coating technique. For structural, optical and morphological characterization, the XRD pattern, SEM images and EDX spectra of the n-ZnO film have been obtained. The optical band gap of n-ZnO has been calculated as 3.29 eV. A Schottky diode application of the film has been performed by evaporation of Au on n-ZnO film. It has been seen that the device has exhibited good rectifying behavior. The current–voltage (IV) and capacitance–voltage (CV) measurement of the device has been taken as a function of the frequency, at room temperature. Using IV curve, the ideality factor and barrier height (Φ b) of n-ZnO have been calculated as 1.93 and 0.80 eV, respectively. (Φ b) (CV) has been found 0.86 eV, at 500 kHz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Tharsika, A.S.M.A. Haseeb, M.F.M. Sabri, Thin Solid Film 558, 283–288 (2014)

    Article  ADS  Google Scholar 

  2. W.-C. Huang, T.-C. Lin, T.-L. Hsien, M.-H. Tsai, C.-T. Horng, T.-L. Kuo, Microelectron Eng. 107, 205–209 (2013)

    Article  Google Scholar 

  3. F. Yakuphanoglu, J. Alloy. Compd. 507, 184–189 (2010)

    Article  Google Scholar 

  4. S. Okuda, T. Matsuo, H. Chiba, T. Mori, K. Washio, Thin Solid Films 557, 197–202 (2014)

    Article  ADS  Google Scholar 

  5. I. Lorite, J. Wasik, T. Michalsky, R. Schmidt-Grund, P. Esquinazi, Thin Solid Films 556, 18–22 (2014)

    Article  ADS  Google Scholar 

  6. E. Sonmez, S. Aydin, M. Yilmaz, M.T. Yurtcan, T. Karacali, M. Ertugrul, J. Nanomater. 2012, 950793 (2012)

    Google Scholar 

  7. S.K. Panda, C. Jacob, Solid-State Electron. 73, 44–50 (2012)

    Article  ADS  Google Scholar 

  8. A. Khan, M. Hussain, M.A. Abbasi, Z.H. Ibupoto, O. Nur, M. Willander, Semicond. Sci. Technol. 28, 125006 (2013)

    Article  ADS  Google Scholar 

  9. S.K. Mohanta, A. Nakamura, G. Tabares, A. Hierro, Á. Guzmán, E. Muñoz, J. Temmyo, Thin Solid Films 548, 539–545 (2013)

    Article  ADS  Google Scholar 

  10. S. Duman, K. Ejderha, Ö. Yigit, A. Türüt, Microelectron. Reliab. 52, 1005–1011 (2012)

    Article  Google Scholar 

  11. K. Çınar, Z. Çaldıran, C. Coşkun, Ş. Aydoğan, Thin Solid Films 550, 40–45 (2014)

    Article  Google Scholar 

  12. Y.-J. Lin, M.-J. Jheng, J.-J. Zeng, Appl. Surf. Sci. 256, 4493–4496 (2010)

    Article  ADS  Google Scholar 

  13. S. Aydogan, K. Cinar, H. Asil, C. Coskun, A. Türüt, J. Alloy. Compd. 476, 913–918 (2009)

    Article  Google Scholar 

  14. H. Kim, J. Kim, D.-W. Kim, Vacuum 101, 92–97 (2014)

    Article  ADS  Google Scholar 

  15. A.Y. Polyakov, N.B. Smirnov, E.A. Kozhukhova, V.I. Vdovin, K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, Appl. Phys. Lett. 83, 1575 (2003)

    Article  ADS  Google Scholar 

  16. H.-Y. Lee, B.-K. Wu, M.-Y. Chern, Curr. Appl. Phys. 13, 1325–1330 (2013)

    Article  ADS  Google Scholar 

  17. M.A. Jing-Jing, J. Ke-Xin, L. Bing-Cheng, F. Fei, X. Hui, Z. Chao-Chao, C. Chang-Le, Chin. Phys. Lett. 27, 107304 (2010)

    Article  ADS  Google Scholar 

  18. S. Singh, P. Chakrabarti, Superlattice Microstruct. 64, 283–293 (2013)

    Article  ADS  Google Scholar 

  19. M. Opel, S. Geprags, M. Althammer, T. Brenninger, R. Gross, J. Phys. D Appl. Phys. 47, 034002 (2014)

    Article  ADS  Google Scholar 

  20. M.G. Tsoutsouva, C.N. Panagopoulos, D. Papadimitriou, I. Fasaki, M. Kompitsas, Mater. Sci. Eng. B 176, 480–483 (2011)

    Article  Google Scholar 

  21. L. Znaidi, Mater. Sci. Eng. B 174, 18–30 (2010)

    Article  Google Scholar 

  22. F.E. Ghodsi, H. Absalan, Acta Phys. Pol. A 118, 659–664 (2010)

    Google Scholar 

  23. Y. Zhang, J. Xu, B. Lin, Z. Fu, S. Zhong, C. Liu, Z. Zhang, Appl. Surf. Sci. 252, 3449–3453 (2006)

    Article  ADS  Google Scholar 

  24. M. Cavas, A.A.M. Farag, Z.A. Alahmed, F. Yakuphanoglu, J. Electroceram. 31, 298–308 (2013)

    Article  Google Scholar 

  25. G. Turgut, E. Sonmez, M. Yılmaz, M.S. Cogenli, M. Yılmaz, U. Turgut, R. Dilber, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-1946-7

    Google Scholar 

  26. S. Ilican, Y. Caglar, M. Caglar, B. Demirci, J. Optoelectron. Adv. Mater. 10, 2592–2598 (2008)

    Google Scholar 

  27. T.B. Ivetić, M.R. Dimitrievska, N.L. Finčur, L.R. Đačanin, I.O. Gúth, B.F. Abramović, S.R. Lukić-Petrović, Ceram. Int. 40, 1545–1552 (2014)

    Article  Google Scholar 

  28. A.B. Usseinov, E.A. Kotomin, A.T. Akilbekov, Y.F. Zhukovskii, J. Purans, Phys. Scripta. 89, 045801 (2014)

    Article  ADS  Google Scholar 

  29. G.W. Scherer, J Sol-Gel Sci. Technol. 8, 353–363 (1997)

    Google Scholar 

  30. A.A.M. Farag, M. Cavas, F. Yakuphanoglu, F.M. Amanullah, J. Alloy. Compd. 509, 7900–7908 (2011)

    Article  Google Scholar 

  31. C.-Y. Tsay, H.-C. Cheng, C.-Y. Chen, K.-J. Yang, C.-K. Lin, Thin Solid Films 518, 1603–1606 (2009)

    Article  ADS  Google Scholar 

  32. M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 258, 3039–3044 (2012)

    Article  ADS  Google Scholar 

  33. V. Craciun, J. Elders, J.G.E. Gardeniers, I.W. Boyd, Appl. Phys. Lett. 65, 2963–2965 (1994)

    Article  ADS  Google Scholar 

  34. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  35. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley, New York, 2006)

    Google Scholar 

  36. F. Yakuphanoglu, Y. Caglar, M. Caglar, S. Ilican, Mater. Sci. Semicond. Process. 13, 137–140 (2010)

    Article  Google Scholar 

  37. S. Aksoy, Y. Caglar, Superlattice Microstruct. 51, 613–625 (2012)

    Article  ADS  Google Scholar 

  38. D. Somvanshi, S. Jit, Electrical characterization of n-ZnO nanowires/p-Si based heterojunction diodes, in Physics of semiconductor devices, ed. by V.K. Jain, A. Verma (Springer International Publishing, Switzerland, 2014), pp. 589–592. doi:10.1007/987-3-319-03002-9_148

    Chapter  Google Scholar 

  39. J.H. Hea, C.H. Ho, Appl. Phys. Lett. 91, 233105 (2007)

    Article  ADS  Google Scholar 

  40. H. Norde, J. Appl. Phys. 50, 5052–5053 (1979)

    Article  ADS  Google Scholar 

  41. S. Karatas, N. Yildirim, A. Türüt, Superlattice Microstruct. 64, 483–494 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ataturk University Research Fund, Projects Number 2013/152 and 2013/112. The authors are grateful to Rabia Meryem Yilmaz for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yilmaz or S. Aydogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, M., Caldiran, Z., Deniz, A.R. et al. Preparation and characterization of sol–gel-derived n-ZnO thin film for Schottky diode application. Appl. Phys. A 119, 547–552 (2015). https://doi.org/10.1007/s00339-015-8987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-8987-5

Keywords

Navigation