Skip to main content
Log in

Terahertz dielectric response of silica-encapsulated FePt core–shell colloid film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Time-domain terahertz (THz) spectroscopy is employed to investigate the dielectric response of silica-encapsulated FePt core–shell colloid film in THz region. The absorption of the colloid film increases with the increasing of the frequency, while the refractive index is stable at about 1.85 in the range of 0.85–3.0 THz. The real and imaginary parts of the dielectric constant of the silica@FePt film are demonstrated to be broadband from 0.85–3.0 THz. Small dispersive features can be seen below the frequency of 0.85 THz, which is tentatively attributed to the scattering effect and the polarization relaxation under low frequency with a low dynamic range. A core–shell model combined with Maxwell-Garnett mixing rule has been used to describe the dielectric response of the colloid film, which is necessary for a reasonable explanation of the experimental data as few experiments have been done with the core–shell model employed. In the high-frequency region, the real part of the dielectric constant fits well; however, the imaginary part of the dielectric constant is lower than the experimental data. The difference between the theoretical analysis and the experimental data suggests that the interfacial effect should be paid attention for the core–shell structures as the diffusion of interfacial dipoles could influence the dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

THz:

Terahertz

THz-TDS:

THz time-domain spectroscopy

TGA:

Thermogravimetric analysis

FTIR:

Fourier transform infrared analysis

MG:

Maxwell-Garnett

TEM:

Transmission electron microscopy

References

  1. Y. Lu, Y. Yin, B.T. Mayers, Y. Xia, Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2, 183–186 (2002)

    Article  ADS  Google Scholar 

  2. F. Caruso, Nanoengineering of particle surfaces. Adv. Mater. 13, 11–22 (2001)

    Article  Google Scholar 

  3. D. Wu, S. Jiang, Y. Cheng, X. Liu, Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths. Opt. Express 21, 1076–1086 (2013)

    Article  ADS  Google Scholar 

  4. C.H. Yu, C.C. Lo, K. Tam, S.C. Tsang, Monodisperse Binary Nanocomposite in Silica with Enhanced Magnetization for Magnetic Separation. J. Phys. Chem. C 111, 7879–7882 (2007)

    Article  Google Scholar 

  5. S.C. Tsang, C.H. Yu, H. Tang, H. He, V. Castelletto, I.W. Hamley et al., Assembly of centimeter long silica coated FePt colloid crystals with tailored interstices by magnetic crystallization. Chem. Mater. 20, 4554–4556 (2008)

    Article  Google Scholar 

  6. X. Xu, L. Song, Y. Shi, Y. Yang, S. Xie, W. Li, Light-induced dielectric transparency in single-walled carbon nanotube films. Chem. Phys. Lett. 410, 298–301 (2005)

    Article  ADS  Google Scholar 

  7. T.-I. Jeon, K.-J. Kim, C. Kang, I.H. Maeng, J.-H. Son, K.H. An et al., Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region. J. Appl. Phys. 95, 5736–5740 (2004)

    Article  ADS  Google Scholar 

  8. A.I. Kingon, J.-P. Maria, S. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000)

    Article  Google Scholar 

  9. V. Craciun, R. Singh, Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation. Appl. Phys. Lett. 76, 1932–1934 (2000)

    Article  ADS  Google Scholar 

  10. D. Grischkowsky, S. Keiding, M.V. Exter, C. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. JOSA B 7, 2006–2015 (1990)

    Article  ADS  Google Scholar 

  11. X.L. Xu, X.M. Wang, F.L. Li, X.C. Zhang, L. Wang, Time-domain terahertz spectral measurement and analysis of single crystal ZnSe. Spectrosc. Spectr. Anal. 24, 1153–1156 (2005)

    Google Scholar 

  12. R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, M. Bonn, Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011)

    Article  ADS  Google Scholar 

  13. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photonics Rev. 5, 124–166 (2011)

    Article  Google Scholar 

  14. J.B. Baxter, G.W. Guglietta, Terahertz spectroscopy. Anal. Chem. 83, 4342–4368 (2011)

    Article  Google Scholar 

  15. N. Vieweg, M.K. Shakfa, B. Scherger, M. Mikulics, M. Koch, THz properties of nematic liquid crystals. J. Infrared Millim. Terahertz Waves 31, 1312–1320 (2010)

    Article  Google Scholar 

  16. B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002)

    Article  ADS  Google Scholar 

  17. A.H. Sihvola, Electromagnetic mixing formulas and applications, 2nd edn. (Springer, London, 1999)

    Book  Google Scholar 

  18. C.H. Yu, N. Caiulo, C.C.H. Lo, K. Tam, S.C. Tsang, Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Adv. Mater. 18, 2312–2314 (2006)

    Article  Google Scholar 

  19. S.H. Sun, C.B. Murray, Dieter Weller, Liesl Folks, Andreas Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  20. M. Chen, J. Kim, J.P. Liu, H.Y. Fan, S.H. Sun, Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132–7133 (2006)

    Article  Google Scholar 

  21. K. CHOKPRASOMBAT, Synthesis of patterned media by self-assembly of FePt nanoparticles. Walailak J. Sci. Technol. 8, 87–96 (2011)

    Google Scholar 

  22. S. Strekopytov, C. Exley, Thermal analyses of aluminium hydroxide and hydroxyaluminosilicates. Polyhedron 25, 1707–1713 (2006)

    Article  Google Scholar 

  23. T. Yamamoto, A. Omori, A. Makino, A. Inoue, Preparation of Fe–Pt–Si Amorphous Ribbons and Their Coercivity after Crystallization. Mater. Trans. 48, 74–79 (2007)

    Article  Google Scholar 

  24. O.B. Belskaya, I.G. Danilova, M.O. Kazakov, R.M. Mironenko, A.V. Lavrenov, V.A. Likholobov, FTIR spectroscopy of adsorbed probe molecules for analyzing the surface properties of supported Pt (Pd) catalysts. Infrared spectroscopy—materials science. Eng. Technol. 65, 149–178 (2012)

    Google Scholar 

  25. A. Badri, C. Binet, J.-C. Lavalley, An FTIR study of surface ceria hydroxy groups during a redox process with H2. J. Chem. Soc., Faraday Trans. 92, 4669–4673 (1996)

    Article  Google Scholar 

  26. A. Allwar, Characteristics of pore structures and surface chemistry of activated carbons by Physisorption, Ftir And Boehm Methods. J. Appl. Chem. 2, 9–15 (2012)

    Google Scholar 

  27. M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy for material characterization. Proceedings of the IEEE 95, 1658–1665 (2007)

  28. Y.C. Shen, P.F. Taday, M. Pepper, Elimination of scattering effects in spectral measurement of granulated materials using terahertz pulsed spectroscopy. Appl. Phys. Lett. 92, 1–3 (2008)

    Article  Google Scholar 

  29. T. Yamabe, K. Fukui, K. Tanaka, The Science and Technology of Carbon Nanotubes, 2nd edn. (Elsevier, Amsterdam, 1999)

    Google Scholar 

  30. Z.-F. Sang, Z.-Y. Li, Interfacial effect on effective dielectric response of spherical granular composites. Phys. Lett. A 331, 125–131 (2004)

    Article  ADS  MATH  Google Scholar 

  31. M. Naftaly, R. Miles, Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared. J. Non-Cryst. Solids 351, 3341–3346 (2005)

    Article  ADS  Google Scholar 

  32. S. Lee, C. Lo, A. Yu, M. Fan, Spectroscopic ellipsometry study of FePt nanoparticle films. Physica Status Solidi (A) 203, 3801–3804 (2006)

    Article  ADS  Google Scholar 

  33. Y. Shen, Y.H. Lin, C.W. Nan, Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 17, 2405–2410 (2007)

    Article  Google Scholar 

  34. F. Garcia-Vidal, J. Pitarke, J. Pendry, Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Lett. 78, 4289 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Dr Xu would like thank support from National Natural Science Foundation of China (Nos. 11374240, 61275105), Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2012KJXX-27), Key Laboratory Science Research Plan of Shaanxi Education Department (13JS101), National Key Basic Research Program (2014CB339800), Research Fund for the Doctoral Program of Higher Education (20136101110007), and International Cooperative Program (201410780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Yu, C., Zhou, Y. et al. Terahertz dielectric response of silica-encapsulated FePt core–shell colloid film. Appl. Phys. A 118, 837–843 (2015). https://doi.org/10.1007/s00339-014-8919-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8919-9

Keywords

Navigation