Skip to main content
Log in

Atomistic simulation of nanodrilling mechanics and mechanism on Cu substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nanodrilling process of copper substrates is studied using molecular dynamics simulations. The effects of the rotation velocity of the tool and substrate temperature are evaluated in terms of atomic trajectories, slip vector, thrust force, stress, flow field, and hole characteristics. The simulation shows that the main hole-making mechanism for drilling with low rotation velocities (0.1°/ps or lower) is mechanical indentation. The number of removed atoms and influence area of the substrate increase with increasing rotation velocity of the tool. When the rotation velocity of the tool or substrate temperature increases, the influence area expands more in the radial direction than in the axial direction. The required thrust force for making a hole is lower at a higher rotation velocity of the tool and higher substrate temperature. Undesirable elastic recovery after drilling can be reduced by increasing the rotation velocity of the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol., B 14(6), 4129 (1996)

    Article  Google Scholar 

  2. Q. Xia, K.J. Morton, R.H. Austin, S.Y. Chou, Nano Lett. 8(11), 3830 (2008)

    Article  ADS  Google Scholar 

  3. R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 61 (1999)

    Article  Google Scholar 

  4. S. Matsui, T. Kaito, J.I. Fujita, M. Komuro, K. Kanda, Y. Haruyama, J. Vac. Sci. Technol., B 18, 3181 (2000)

    Article  Google Scholar 

  5. Q.F. Xia, J.J.S. Yang, W. Wu, X.M. Li, R.S. Williams, Nano Lett. 10, 2909 (2010)

    Article  ADS  Google Scholar 

  6. Q.C. Hsu, J.J. Hsiao, T.L. Ho, C.D. Wu, Microelectron. Eng. 91, 178 (2012)

    Article  Google Scholar 

  7. M. Schvartzman, K. Nguyen, M. Palma, J. Abramson, J. Sable, J. Hone, M.P. Sheetz, S.J. Wind, J. Vac. Sci. Technol., B 27, 61 (2009)

    Article  Google Scholar 

  8. Q.C. Hsu, Y.T. Lin, D.C. Chou, C.D. Wu, Curr. Nanosci. 8(3), 424 (2012)

    Article  ADS  Google Scholar 

  9. Q.C. Hsu, C.L. Lin, C.D. Wu, T.H. Fang, J. Comput. Theor. Nanosci. 9, 662 (2012)

    Article  Google Scholar 

  10. C.D. Wu, T.H. Fang, Y.J. Huang, F.T. Weng, J. Comput. Theor. Nanosci. 9, 1611 (2012)

    Article  Google Scholar 

  11. C.D. Wu, T.H. Fang, J.F. Lin, J. Appl. Phys. 111(10), 103521 (2012)

    Article  ADS  Google Scholar 

  12. P.H. Sung, C.D. Wu, T.H. Fang, C.I. Weng, Appl. Surf. Sci. 258(18), 7064 (2012)

    Article  ADS  Google Scholar 

  13. P.H. Sung, C.D. Wu, T.H. Fang, J. Phys. D Appl. Phys. 45, 215303 (2012)

    Article  ADS  Google Scholar 

  14. S.J. Sun, S.P. Ju, Y.C. Lo, J.S. Lin, J. Appl. Phys. 97, 94308 (2005)

    Article  Google Scholar 

  15. K. Maekawa, A. Itoh, Wear 188, 155 (1995)

    Article  Google Scholar 

  16. C.C. Hwang, J.G. Chang, G.J. Huang, S.H. Huang, J. Appl. Phys. 92, 5904 (2001)

    Article  ADS  Google Scholar 

  17. H.Y. Lai, P.H. Huang, T.H. Fang, Appl. Phys. A 86, 497 (2007)

    Article  ADS  Google Scholar 

  18. S.F. Miller, P.J. Blau, A.J. Shih, J. Mater. Eng. Perform. 14(5), 647 (2005)

    Article  Google Scholar 

  19. B.P. Raju, M.K. Swamy, IJERA 2(6), 716 (2012)

    Google Scholar 

  20. S.F. Miller, J. Tao, A.J. Shih, Int. J. Mach. Tool. Man. 46, 1526 (2006)

    Article  Google Scholar 

  21. T.H. Fang, C.I. Weng, Nanotechnology 11, 148 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan under grants NSC 100-2628-E-151-003-MY3 and NSC 100-2221-E-151-018-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Hua Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CD., Fang, TH. & Kuo, CH. Atomistic simulation of nanodrilling mechanics and mechanism on Cu substrates. Appl. Phys. A 118, 307–313 (2015). https://doi.org/10.1007/s00339-014-8732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8732-5

Keywords

Navigation