Skip to main content
Log in

Microscopic spallation mechanisms induced by a pulse laser at the solid-state interface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a study of the transient behavior of structural dynamics and the associated innovatory microscopic spallation mechanism at the solid-state interface, induced by an incident femtosecond pulse laser. By detailed structural dynamic analysis, using the technique of molecular dynamics simulation, the spallation mechanism at the solid–solid interface is observed. The occurrence of structural spallation is mainly characterized by extraordinary expansion dynamics and tensile stress that induces interior structural void defect coalescence, eventually leading to cracking. The microscopic phenomenon of moderate ductile fracturing at the solid–solid interface is identified. A high strain rate in the order of 109 s-1 is observed. Both aforementioned phenomena are analogous to the experimental results of metal-film spallation excited by a pulse laser. Moreover, it is also shown that the critical value of the stain rate is one of the dominant factors that influences the occurrence and mechanism of structural spallation. The results of simulations reveal that the thin-film structure is safe if the strain rate is below certain critical values. The critical damage threshold is evaluated and technical suggestions to avoid interfacial fracture are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Forster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature (London) 410, 65 (2001)

    Article  ADS  Google Scholar 

  2. G. Kamlage, T. Bauer, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 307 (2003)

    ADS  Google Scholar 

  3. T. Okamoto, E. Ohmura, T. Sano, Y. Morishige, I. Miyamoto, Appl. Phys. A 81, 639 (2005)

    Article  ADS  Google Scholar 

  4. Y. Nakata, T. Okada, M. Maeda, Appl. Phys. A 79, 1481 (2004)

    ADS  Google Scholar 

  5. R.M. Lorenz, C.L. Kuyper, P.B. Allen, L.P. Lee, D.T. Chiu, Langmuir 20, 1833 (2004)

    Article  Google Scholar 

  6. J. Wang, R.L. Weaver, N.R. Sottos, Exp. Mech. 42, 74 (2002)

    Article  Google Scholar 

  7. W.H. Zhu, M. Yoshida, J. Mater. Sci. Lett. 21, 1569 (2002)

    Article  Google Scholar 

  8. C. Fuhse, H. Krebs, S. Vitta, G.A. Johansson, Appl. Opt. 43, 6265 (2004)

    Article  ADS  Google Scholar 

  9. A. Kobayashi, A. Jain, V. Gupta, V. Kireev, Vacuum 73, 533 (2004)

    Article  Google Scholar 

  10. M. Zhou, D.Y. Zeng, J.P. Kan, Y.K. Zhang, L. Cai, Z.H. Shen, X.R. Zhang, S.Y. Zhang, J. Appl. Phys. 94, 2968 (2003)

    Article  ADS  Google Scholar 

  11. T.Q. Qiu, C.L. Tien, Int. J. Heat Mass Transf. 37, 2789 (1994)

    Article  Google Scholar 

  12. B.S. Yilbas, J. Phys. D Appl. Phys. 35, 1210 (2002)

    Article  ADS  Google Scholar 

  13. D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  14. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  15. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  16. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  17. D. Perez, L.J. Lewis, Phys. Rev. Lett. 89, 25504 (2002)

    Article  Google Scholar 

  18. F. Vidal, T.W. Johnston, S. Laville, O. Barthelemy, M. Chaker, B.L. Drogoff, J. Margot, M. Sabsabi, Phys. Rev. Lett. 86, 2573 (2001)

    Article  ADS  Google Scholar 

  19. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992)

    Google Scholar 

  20. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  21. J.Q. Broughton, G.H. Gilmer, J. Chem. Phys. 79, 5095 (1983)

    Article  ADS  Google Scholar 

  22. D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, A.J.C. Ladd, Phys. Rev. A 28, 1016 (1983)

    Article  ADS  Google Scholar 

  23. X. Wang, X. Xu, J. Heat Transf. Trans. ASME 124, 265 (2002)

    Article  Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  25. W.D. Callister, Materials Science and Engineering: An Introduction (Wiley, New York, 1990)

    Google Scholar 

  26. K. Ishizaki, I.L. Spain, P. Boisaitis, J. Chem. Phys. 63, 1401 (1975)

    Article  ADS  Google Scholar 

  27. N. Chandra, S. Namilae, C. Shet, Phys. Rev. B 69, 094101 (2004)

    Article  ADS  Google Scholar 

  28. V. Gupta, J. Yuan, J. Appl. Phys. 74, 2397 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-Y. Lai.

Additional information

PACS

02.70.Ns; 42.62.-b; 64.60.Ht; 61.72.Cc; 64.60.-i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, HY., Huang, PH. & Fang, TH. Microscopic spallation mechanisms induced by a pulse laser at the solid-state interface. Appl. Phys. A 86, 497–503 (2007). https://doi.org/10.1007/s00339-006-3799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3799-2

Keywords

Navigation