Skip to main content
Log in

THz photomixer with milled nanoelectrodes on LT-GaAs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A terahertz (THz) photomixer: (i) a meander type antenna with integrated nanoelectrodes on (ii) a low temperature grown GaAs has been fabricated and characterized. It was designed for spectral range of 0.3–0.4 THz where molecular fingerprinting and sensing are performed. By combination of electron beam lithography with post-processing using focused ion beam (FIB), milling the THz emitter was successfully fabricated. Nanogaps as small as 40 nm width in the active area of photomixer were milled by FIB. Nanocontacts enhance electric fields of the illuminated and THz radiation and contribute to a better collection of photo-electrons. THz emission was obtained and spectrally characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Katzenellenbogen, D. Grischkowsky, Electrical characterization to 4 THz of N-and P-type GaAs using THz time-domain spectroscopy. Appl. Phys. Lett. 61(7), 840–842 (1992)

    Article  ADS  Google Scholar 

  2. B. Fischer, H. Helm, P. Jepsen, Chemical recognition with broadband THz spectroscopy. Proc. IEEE 95(8), 1592–1604 (2007)

    Article  Google Scholar 

  3. W. Stillman, D. Veksler, T. Elkhatib, K. Salama, F. Guarin, M. Shur, Sub-terahertz testing of silicon MOSFET. Electron. Lett. 44(22), 1325–1326 (2008)

    Article  Google Scholar 

  4. B. Peter, S. St. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, A. Karellas, Development and testing of a single frequency terahertz imaging system for breast cancer detection. IEEE Trans. Terahertz Sci. Technol. 3(4), 374–386 (2013)

    Article  Google Scholar 

  5. S. Preu, G. Döhler, S. Malzer, L. Wang, A. Gossard, Tunable, continuous-wave Terahertz photomixer sources and applications. J. Appl. Phys. 109, 061301 (2011)

    Article  ADS  Google Scholar 

  6. H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner et al., Nano-antenna in a photoconductive photomixer for highly efficient continuous wave Terahertz emission. Sci. Rep. 3 (2013)

  7. C. Berry, M. Unlu, M. Hashemi, M. Jarrahi, Use of plasmonic gratings for enhancing the quantum efficiency of photoconductive Terahertz sources, in 37th International Conference on IEEE Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2012, pp. 1–2 (2 012)

  8. C. Berry, M. Jarrahi, Terahertz generation using plasmonic photoconductive gratings. New J. Phys. 14(10), 105029 (2012)

    Article  ADS  Google Scholar 

  9. C. Berry, N. Wang, M. Hashemi, M. Unlu, M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013)

    Article  ADS  Google Scholar 

  10. K. Pitra, Z. Raida, H. Hartnagel, Design of circularly polarized Terahertz antenna with interdigital electrode photomixer, in 7th European Conference on Antennas and Propagation (EuCAP), 2013, pp. 2431–2434 (2013)

  11. S. Juodkazis, L. Rosa, Surface defect mediated electron hopping between nanoparticles separated by a nano-gap. Phys. Stat. Sol. Rapid Res. Lett. 4(10), 244–246 (2010)

    Article  ADS  Google Scholar 

  12. L. Rosa, K. Sun, J. Szymanska, F.E. Hudson, A. Dzurak, A. Linden, S. Bauerdick, L. Peto, S. Juodkazis, Tailoring spectral position and width of field enhancement by ion-beam trimming of plasmonic nanoparticles. Phys. Stat. Sol. Rapid Res. Lett. 4(10), 262–264 (2010)

    Article  ADS  Google Scholar 

  13. G. Seniutinas, L. Rosa, G. Gervinskas, E. Brasselet, S. Juodkazis, 3D nano-structures for laser nano-manipulation. Beilstein J. Nanotechnol. 4(1), 534–541 (2013)

    Article  Google Scholar 

  14. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, T.E. Darcie, Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett. 12(12), 6255–6259 (2013)

    Article  ADS  Google Scholar 

  15. G. Gervinskas, G. Seniutinas, L. Rosa, S. Juodkazis, Arrays of arbitrarily shaped nanoparticles: overlay-errorless direct ion write. Adv. Opt. Mat. 1(6), 456–459 (2013)

    Article  Google Scholar 

  16. G. Gervinskas, G. Seniutinas, S. Juodkazis, Control of surface charge for high-fidelity nanostructuring of materials. Laser Photonics Rev., pp. 1–5, (2013, online). doi:10.1002/lpor.201300093

  17. N. Zamdmer, Q. Hu, K. McIntosh, S. Verghese, Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias. Appl. Phys. Lett. 75(15), 2313–2315 (1999)

    Article  ADS  Google Scholar 

  18. E. Brown, K. McIntosh, F. Smith, K. Nichols, M. Manfra, C. Dennis, J. Mattia, Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer. Appl. Phys. Lett. 64(24), 3311–3313 (1994)

    Article  ADS  Google Scholar 

  19. V. Švorčík, O. Kvítek, O. Lyutakov, J. Siegel, Z. Kolská, Annealing of sputtered gold nano-structures. Appl. Phys. A 102(3), 747–751 (2011)

    Article  ADS  Google Scholar 

  20. H. Liu, J. Ascencio, M. Perez-Alvarez, M. Yacaman, Melting behavior of nanometer sized gold isomers. Surf. Sci. 491(1), 88–98 (2001)

    Article  ADS  Google Scholar 

  21. S.H. Yang, W. Berry, N. Wang, M.R. Hashemi, M. Jarrahi, Conference 8985: terahertz, rf, millimeter, and sub-millimeter-wave technology and applications vii. Tech. Summ. 1, 88 (2014)

    Google Scholar 

  22. C. Zandonella, Terahertz imaging: T-ray specs. Nature 424(6950), 721–722 (2003)

    Article  ADS  Google Scholar 

  23. P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, M. Hofmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein et al., Medical THz imaging: an investigation of histo-pathological samples. Phys. Med. Biol. 47(21), 3875 (2002)

    Article  Google Scholar 

  24. W.E. Baughman, H. Yokus, S. Balci, D.S. Wilbert, P. Kung, S.M. Kim, Observation of hydrofluoric acid burns on osseous tissues by means of Terahertz spectroscopic imaging. IEEE Trans. Terahertz Sci. Technol. 3(4), 387–394 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Support via Australian Research Council Discovery DP130101205, DP120102980 and Linkage LP120100161 Grant with Raith-Asia is acknowledged. The THz experimental setup was supported by the Australian Research Council and the University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Seniutinas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seniutinas, G., Gervinskas, G., Constable, E. et al. THz photomixer with milled nanoelectrodes on LT-GaAs. Appl. Phys. A 117, 439–444 (2014). https://doi.org/10.1007/s00339-014-8685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8685-8

Keywords

Navigation