Skip to main content
Log in

Fabricating planar spiral inductances for a wireless charging module by using 355 nm ultraviolet laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Inductive charging is one of the major wireless charging methods used to induce current through the coil inductances of a receiver. In this study, a 355-nm ultraviolet laser was used to create planar square-spiral inductances (PSSIs) on a copper-coated glass substrate. To obtain the optimal micromachining effect, coils with various line widths (0.5, 1.0, 1.5, and 1.9 mm) were developed on the substrate surface by laser direct writing technique and using a 3-W pulsed laser at various scanning speeds (200, 600, and 1,000 mm/s) and pulse repetition frequencies (60, 80, and 100 kHz). Scanning electron microscopy results revealed that a high pulse repetition frequency and fast scanning speed can reduce the oxidation degree of processed samples. Furthermore, the edge aspect ratio was dependent on the increasing scanning speed, but the increase in the aspect ratio was not substantial. Subsequently, a wireless charging module was used to evaluate the laser ablation quality of the PSSIs, which the induction capacity increased as the oxidation degree of the PSSIs decreased and demonstrated the highest induction capacity of 11.34 % when the scanning speed was 2,000 mm/s. However, because of the power loss during wireless charging and the oxidation degree of the coil surface, the actual inductance value was approximately 15 % of the value estimated using the modified Wheeler formula. In the future, these PSSIs can be applied in wireless charging modules and the results can serve as a reference for enhancing induction capacity in PSSI design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.J. Casanova, Z.N. Low, J. Lin, IEEE Trans. Ind. Electron. 56(8), 3060 (2009)

    Article  Google Scholar 

  2. K.A. Peterson, K.D. Patel, C.K. Ho, S.B. Rohde, C.D. Nordauist, C.A. Walker, B.D. Wroblewski, M. Okandan, Int. J. Appl. Ceram. Technol. 2, 345 (2005)

    Article  Google Scholar 

  3. M. Yamaguchi, S. Arakawa, H. Ohzeki, Y. Hayashi, I.K. Arai, IEEE Trans. Magn. 28(5), 3015 (1992)

    Article  ADS  Google Scholar 

  4. S. Yi, K. Kim, D. Lee, H. Kim, T. Jung, Microelectron. Int. 30 (2013)

  5. J.L.M. Rupp, U.P. Muecke, P.C. Nalam, L.J. Gauckler, J. Power Source 195(9), 2669 (2010)

    Article  Google Scholar 

  6. T. Sato, H. Tomita, A. Sawabe, T. Inoue, T. Mizoguchi, M. Sahashi, IEEE Trans. Magn. 30(2), 217 (1994)

    Article  ADS  Google Scholar 

  7. M. Schaefer, J. Holtkamp, A. Gillner, Synth. Met. 161, 1051 (2011)

    Article  Google Scholar 

  8. C.B. Aronld, H. Kim, A. Pique, Appl. Phys. A 79(3), 417 (2004)

    Article  ADS  Google Scholar 

  9. H. Yu, H. Shin, M. Lee, Curr. Appl. Phys. 11, 179 (2011)

    Article  Google Scholar 

  10. T. Gotz, M. Stuke, Appl. Phys. A 64(6), 539 (1997)

    Article  ADS  Google Scholar 

  11. R.P. Ribas, J. Lescot, J.L. Leclercq, J.M. Karam, F. Ndagijimana, IEEE Trans. Microw. Theory Tech. 48(8), 1326 (2000)

    Article  ADS  Google Scholar 

  12. N. Klejwa, R. Misra, J. Provine, R.T. Howe, S.J. Klejwa, J. Vac. Sci. Technol. B 27, 2745 (2009)

    Article  Google Scholar 

  13. S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, T.H. Lee, IEEE J. Solid-State Circuit 34(10), 1419 (1999)

    Article  Google Scholar 

  14. A.R. Lopez, IEEE Antennas Propag. Mag. 48(4), 28 (2006)

    Article  ADS  Google Scholar 

  15. H.M. Greenhouse, IEEE Trans. Parts Hybrids Packag. 10(2), 101 (1974)

    Article  Google Scholar 

  16. S.F. Tseng, W.T. Hsiao, K.C. Huang, D. Chiang, Appl. Surf. Sci. 257, 8813 (2011)

    Article  ADS  Google Scholar 

  17. G. Vandevoorde, R. Puers, Sens. Actuators A Phys. 92(1), 305 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council of Taiwan for financially supporting this research under Grants NSC 102-2622-E-492-011-CC3 and NSC 102-2221-E-492-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Cheng Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CC., Tsai, HY., Yang, CC. et al. Fabricating planar spiral inductances for a wireless charging module by using 355 nm ultraviolet laser ablation. Appl. Phys. A 117, 69–75 (2014). https://doi.org/10.1007/s00339-014-8657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8657-z

Keywords

Navigation