Skip to main content
Log in

Development of MWCNTs-based wideband photodetector in the visible range: wavelength and power-dependent response studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photosensitive detector has been reproducibly fabricated using MWCNTs random network-based film grown by chemical vapor deposition technique. For the first time, excellent photoconductive response is reported over the entire green to red band (508–680 nm) of the visible light with maximum efficiency. Wavelength-dependent studies as well as white light exposure confirm the achievement of significant response in the entire visible region which is in commensurate with the absorption spectra of the detection element. The other remarkable novelties of this work are its fast response and recovery time, excellent repeatability and no drift over a time span of 1 year. Besides, there is no local heating effect observed due to photon flux density up to 1,800 lux/m2. The sensing mechanism is explained by interband transition of free carriers, and there is no heat-induced e–h pair generation. The results have opened up the possibility of reproducible fabrication of such device applicable for optical detector or CCD for visible light detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. W. Hoenlein, Carbon nanotubes for potential device and interconnect applications, integrated circuit design and technology, 2006. ICICDT ‘06. 2006 IEEE International Conference on IC Design and Technology

  3. K. Mukai, K. Asaka, T. Sugino, K. Kiyohara, I. Takeuchi, N. Terasawa, D.N. Futaba, K. Hata, T. Fukushima, T. Aida, Adv. Mater. 21, 1582 (2009)

    Article  Google Scholar 

  4. T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, J. Am. Chem. Soc. 128, 13338 (2006)

    Article  Google Scholar 

  5. P. Mishra, N.H. Tai, Harsh, S.S. Islam, Mater. Res. Bull. 48, 2804 (2013). doi:10.1016/j.materresbull.2013.04.021

    Article  Google Scholar 

  6. A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications (Springer, New York, 2008)

    Book  Google Scholar 

  7. M. Scarselli, P. Castrucci, M. De Crescenzi, J. Phys. Condens. Matter 24, 313202 (2012)

    Article  ADS  Google Scholar 

  8. A. Fujiwara, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba, J. Appl. Phys. 40, 1229 (2001)

    Article  Google Scholar 

  9. S. Lu, B. Panchapakesan, Nanotechnology 17, 1843 (2006)

    Article  ADS  Google Scholar 

  10. I.A. Levitsky, W.B. Euler, Appl. Phys. Lett. 83, 1857 (2003)

    Article  ADS  Google Scholar 

  11. L. Liu, Y. Zhang, Sens. Actuators A 116, 394 (2004)

    Article  Google Scholar 

  12. M. Freitag, Y. Martin, J.A. Misewich, R. Martel, Ph. Avouris, Nano Lett. 3, 1067 (2003)

    Article  ADS  Google Scholar 

  13. Y. Zhang, S. Iijima, Phys. Rev. Lett. 82, 3472 (1999)

    Article  ADS  Google Scholar 

  14. Z.L. Yang, H.Z. Chen, L. Cao, H.Y. Li, M. Wang, Mater. Sci. Eng. B 106, 73 (2004)

    Article  Google Scholar 

  15. P.C. Collins, M.S. Arnold, P. Avouris, Science 292, 706 (2001)

    Article  ADS  Google Scholar 

  16. L. Shaoxin, P. Balaji, Nanotechnology 17, 1843 (2006)

    Article  Google Scholar 

  17. S. Nanot, A.W. Cummings, C.L. Pint, A. Ikeuchi, T. Akiho, K. Sueoka, R.H. Hauge, F. Leonard, J. Kono, Sci. Rep. 3, 1335 (2013). doi:10.1038/srep01335

    Article  ADS  Google Scholar 

  18. B. Pradhan, K. Setyowati, H. Liu, D.H. Waldeck, J. Chen, Nano Lett. 8, 1142 (2008)

    Article  ADS  Google Scholar 

  19. X.H. Qiu, M. Freitag, V. Perebeinos, P. Avouris, Nano Lett. 5, 749 (2005). doi:10.1021/nl050227y

    Article  ADS  Google Scholar 

  20. H. Chen, N. Xi, K. Wai C. Lai, in Nano-Optoelectronic Sensors and Devices, ed. by N. Xi, K. Wai, C. Lai (Elsevier, Amsterdam, 2012), pp. 107. doi:10.1016/B978-1-4377-3471-3.00007-1

  21. S. Yousefzadeh, A. Reyhani, N. Naseri, A.Z. Moshfegh, J. Solid State Chem. 204, 341 (2013)

    Article  ADS  Google Scholar 

  22. J.E. Marshall, Y. Ji, N. Torras, K. Zinoviev, E.M. Terentjev, Soft Matter 8, 1570 (2012)

    Article  ADS  Google Scholar 

  23. M.Y. Hwang, H. Kim, E.S. Kim, J. Lee, S.M. Koo, Nanoscale Res. Lett. 6, 573 (2011)

    Article  ADS  Google Scholar 

  24. Q. Ngo, D. Petranovic, S. Krishnan, A.M. Cassell, Q. Ye, J. Li, M. Meyyappan, C.Y. Yang, IEEE Trans. Nanotechnol. 3, 31 (2004)

    Article  Google Scholar 

  25. J. Zhang, N. Xi, K.W.C. Lai, H. Chen, Y. Luo, G. Li, Single carbon nanotube based photodiodes for infrared detection, 7th IEEE international conference on nanotechnology, 1156 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Harsh & Islam, S.S. Development of MWCNTs-based wideband photodetector in the visible range: wavelength and power-dependent response studies. Appl. Phys. A 117, 1119–1123 (2014). https://doi.org/10.1007/s00339-014-8586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8586-x

Keywords

Navigation