Skip to main content
Log in

Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report a facile method for controllable fabrication of high-density silver nanoparticle films with a widely adjustable surface plasmon resonance (SPR) frequency, based on the gas phase cluster beam deposition. On the one hand, we can control the particle size by depositing clusters on silica substrate. Light extinction spectra of the self-assembled Ag nanoparticles with various particle sizes are characterized and show two SPRs, in which a SPR exhibits a redshift from less 400 nm to more than 570 nm with an increase in the particle size, whereas the other shows a slight position shifting. On the other hand, the inter-particle distance of the self-assembled Ag nanoparticles can also be controlled by depositing clusters on silica glass coated with Formvar film, and the SPR wavelength shows a redshift from <400 nm to more than 560 nm, which can be attributed to the increase of the fraction of closely spaced nanoparticle pairs that are near-field coupled with the deposition mass. The size and coverage-dependent SPR properties are also compared with the results from the discrete dipole approximation calculations. The present method of tailoring metallic microstructures could find important applications in plasmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, D.M. Whittaker, Phys. Rev. Lett. 87, 176801 (2001)

    Article  ADS  Google Scholar 

  2. Y. Sun, Y. Xia, Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  3. J.G. Fleming, S.Y. Lin, I. Ady, R. Biswas, M.K. Ho, Nature 417, 52 (2002)

    Article  ADS  Google Scholar 

  4. J. Chen, R.Q. Xu, Z.Q. Liu, C.J. Tang, Z. Chen, Z.L. Wang, Opt. Commun. 297, 194 (2013)

    Article  ADS  Google Scholar 

  5. J. Chen, W. Dong, Q.G. Wang, C.J. Tang, Z. Chen, Z.L. Wang, Chin. Phys. Lett. 9, 097303 (2012)

    Article  ADS  Google Scholar 

  6. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  7. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  8. H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  9. J. Chen, R.Q. Xu, Z.D. Yan, Z. Chen, Z.L. Wang, Opt. Commun. 307, 73 (2013)

    Article  ADS  Google Scholar 

  10. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Nature 460, 1110 (2009)

    Article  ADS  Google Scholar 

  11. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Nat. Mater. 7, 442 (2008)

    Article  ADS  Google Scholar 

  12. P. Mühlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  13. M.L. Juan, M. Righini, R. Quidant, Nat. Photonics 5, 349 (2011)

    Article  ADS  Google Scholar 

  14. J. Chen, Q. Shen, Z. Chen, Q.G. Wang, C.J. Tang, Z.L. Wang, J. Chem. Phys. 136, 214703 (2012)

    Article  ADS  Google Scholar 

  15. Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3, 955 (2003)

    Article  ADS  Google Scholar 

  16. E. Hao, K.L. Kelly, J.T. Hupp, G.C. Schatz, J. Am. Chem. Soc. 124, 15182 (2002)

    Article  Google Scholar 

  17. F. Yan, W.A. Goedel, Nano Lett. 4, 1193 (2004)

    Article  ADS  Google Scholar 

  18. H. Atwater, Sci. Am. 296, 56 (2007)

    Article  Google Scholar 

  19. A.M. Kalsin, M. Fialkowski, M. Paszewski, M.S.K. Smoukov, K.J.M. Bishop, B.A. Grzybowski, Science 312, 420 (2006)

    Article  ADS  Google Scholar 

  20. S. Narayanan, J. Wang, X.M. Lin, Phys. Rev. Lett. 93, 135503 (2004)

    Article  ADS  Google Scholar 

  21. A.R. Tao, D.P. Ceperley, P. Sinsermsuksakul, A.R. Neureuther, P.D. Yang, Nano Lett. 8, 4033 (2008)

    Article  ADS  Google Scholar 

  22. W.Q. Zhu, M.G. Banaee, D.X. Wang, Y.Z. Chu, K.B. Crozier, Small 7, 1761 (2011)

    Article  Google Scholar 

  23. A. Kinkhabwala, Z.F. Yu, S.H. Fan, Y.R. Avlasevich, K. Müllen, W.E. Moerner, Nat. Photonics 3, 654 (2009)

    Article  ADS  Google Scholar 

  24. M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Nano Lett. 12, 3778 (2012)

    Article  ADS  Google Scholar 

  25. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, Y. Thurner, J. Vac. Sci. Technol. A Vac. Surf. Films 12, 2925 (1994)

    Article  ADS  Google Scholar 

  26. M. Han, C. Xu, D. Zhu, L. Yang, J. Zhang, Y. Chen, K. Ding, F. Song, G. Wang, Adv. Mater. 19, 2979 (2007)

    Article  Google Scholar 

  27. C. Binns, Surf. Sci. Rep. 44, 1 (2001)

    Article  ADS  Google Scholar 

  28. D.W. Pohl, Near-Field Optics and Surface Plasmon Polaritons (Springer, Heidelberg, 2001)

    Google Scholar 

  29. P.J. Flatau, B. Draine, J. Opt. Soc. Am. A: 11, 1491 (1994)

    Article  ADS  Google Scholar 

  30. B.T. Draine, P. Flatau, arXiv preprint arXiv:1305.6497 (May 2013)

  31. H.-J. Hagemann, W. Gudat, C. Kunz, J. Opt. Soc. Am. A: 65, 742 (1975)

    Article  ADS  Google Scholar 

  32. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, London, 2008)

    Google Scholar 

Download references

Acknowledgments

The authors would acknowledge financial supports from the National Natural Science Foundation of China (Grant Nos. 11304159, 11326225, 61372045, 11104032), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20133223120006, 20123223120003), the Scientific Research Foundation of Graduate School of Nanjing University (Grant no. 2013CL10), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Grant nos. NY213023, NY213016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, P., Chen, J., Xu, R. et al. Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties. Appl. Phys. A 117, 1067–1073 (2014). https://doi.org/10.1007/s00339-014-8546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8546-5

Keywords

Navigation