Skip to main content
Log in

Facile Synthesis of Tunable Nanostructured Plasmonic Templates by Electroless Deposition

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we have developed plasmonic Ag nanoparticles supported on Si substrates via a simple electroless deposition process eliminating the need of vacuum technology. The near- and far-field plasmonic performance of the produced nanoparticles were evaluated by surface-enhanced Raman scattering (using Rhodamine 6G as test molecule) and specular spectral reflectivity measurements, respectively. The factors influencing the development of nanoparticles, such as the type (p- or n-) and the orientation ({100} or {111}) of the substrate, the deposition time, and the solution’s concentration, were studied thoroughly by optical measurements, x-ray diffraction, auger electron spectroscopy, and x-ray photoelectron spectroscopy. The deposition time, as well as the concentration, affected significantly the development and the growth rate of the particles making this technique an easy and inexpensive method for the development of tunable plasmonic nanoparticles. The produced plasmonic templates had improved signal-to-noise ratio by an order of magnitude for R6G compared to sputter-deposited Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc London, Ser A203:385–420

    Article  Google Scholar 

  2. Mie G (1908) Beiträge zur optik trübe rmedien, speziell kolloidaler metallösungen. Ann der Physik 330:377–445

    Article  Google Scholar 

  3. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science and Business Media LLC, New York, pp 65–87

    Google Scholar 

  4. Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441

    Article  CAS  Google Scholar 

  5. Halas NJ (2010) Plasmonics: an emerging field fostered by nano letters. Nano Lett 10:3816–3822

    Article  CAS  Google Scholar 

  6. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  7. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827

    Article  CAS  Google Scholar 

  8. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9:865

    Article  CAS  Google Scholar 

  9. Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16:133–146

    Article  CAS  Google Scholar 

  10. Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Panagiotopoulos NT, Gravalidis C, Kassavetis S, Patsalas P, Logothetidis S (2012) Plasmonic silver nanoparticles for improved organic solar cells. Solar Ener Mater Solar Cells 104:165–174

    Article  CAS  Google Scholar 

  11. Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Hastas N, Panagiotopoulos NT, Patsalas P, Logothetidis S (2014) Performance of hybrid buffer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 560:27–33

    Article  CAS  Google Scholar 

  12. Beliatis MJ, Henley SJ, Han S, Gandhi K, Adikaari AA, Stratakis E, Kymakis E, Silva SRP (2014) Organic solar cells with plasmonic layers formed by laser nanofabrication. Phys Chem Chem Phys 15:8237–8244

    Article  Google Scholar 

  13. Siozios A, Koutsogeorgis DC, Lidorikis E, Dimitrakopoulos GP, Kehagias T, Zoubos H, Komninou P, Cranton WM, Kosmidis C, Patsalas P (2012) Optical encoding by plasmon-based patterning: hard and inorganic materials become photosensitive. Nano Lett 12:259–263

    Article  CAS  Google Scholar 

  14. Van Duyne RP (2004) Molecular plasmonics. Science 306:985–986

    Article  CAS  Google Scholar 

  15. Harpster MH, Zhang H, Sankara-Warrier AK, Ray BH, Ward TR, Kollmar JP, Carron KT, Mecham JO, Corcoran RC, Wilson WC, Johnson PA (2009) SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens Bioelectr 25:674–681

    Article  CAS  Google Scholar 

  16. McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectr 65:825–837

    Article  CAS  Google Scholar 

  17. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    Article  CAS  Google Scholar 

  18. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Nat Acad Sci USA 101:17930–17935

    Article  CAS  Google Scholar 

  19. Beliatis MJ, Henley SJ, Silva SRP (2011) Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors. Opt Lett 36:1362–1364

    Article  CAS  Google Scholar 

  20. D’Andrea C, Neri F, Ossi PM, Santo N, Trusso S (2009) The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology 20:2456061–2456065

    Google Scholar 

  21. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  22. Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B110:1944–1948

    Article  Google Scholar 

  23. Kassavetis S, Kaziannis S, Pliatsikas N, Avgeropoulos A, Karantzalis AE, Kosmidis C, Lidorikis E, Patsalas P (2015) Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation. Appl Surf Sci 336:262–266

    Article  CAS  Google Scholar 

  24. Brejna PR, Griffiths PR (2010) Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl Spectrosc 64:493–499

    Article  CAS  Google Scholar 

  25. Ye W, Chang Y, Ma C, Jia B, Cao G, Wang C (2007) Electrochemical investigation of the surface energy: effect of the HF concentration on electroless silver deposition onto p-Si{111}. Appl Surf Sci 253:3419–3424

    Article  CAS  Google Scholar 

  26. Ten Kortenaar MV, De Goeij JJM, Kolar ZI, Frens G, Lusse PJ, Zuiddam MR, Van Der Drift E (2001) Electroless silver deposition in 100 nm silicon structures. J Electrochem Soc 148:C28–C33

    Article  CAS  Google Scholar 

  27. Yae S, Nasua N, Matsumoto K, Hagihara T, Fukumuro N, Matsuda H (2007) Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions. Electrochim Acta 53:35–41

    Article  CAS  Google Scholar 

  28. Ye W, Shen C, Tian J, WangC HC, Gao H (2009) Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sci 11:1088–1093

    Article  CAS  Google Scholar 

  29. Galopin E, Barbillat J, Coffinier Y, Szunerits S, Patriarche G, Boukherroub R (2009) Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl Mater Inter 7:1396–1403

    Article  Google Scholar 

  30. Sun X, Tao R, Lin L, Li Z, Zhang Z, Feng J (2011) Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Appl Surf Sci 257:3861–3866

    Article  CAS  Google Scholar 

  31. Ozdemir B, Kulakci M, Turan R, Unalan HE (2011) Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22:1556061–1556067

    Article  Google Scholar 

  32. Peng K, Lu A, Zhang R, Lee S-T (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035

    Article  CAS  Google Scholar 

  33. Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, Hoboken

    Book  Google Scholar 

  34. Panagiotopoulos NT, Kalfagiannis N, Vasilopoulos KC, Pliatsikas N, Kassavetis S, Vourlias G, Karakassides MA, Patsalas P (2015) Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering. Nanotechnology 26:205603

    Article  CAS  Google Scholar 

  35. Pliatsikas N, Siozios A, Kassavetis S, Vourlias G, Patsalas P (2014) Optical properties of nanostructured Al-rich Al1−xTixN films. Surf Coat Technol 257:63–69

    Article  CAS  Google Scholar 

  36. Ferraria AM, Carapeto AP, do Rego Botelho AM (2012) X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86:1988–1991

    Article  CAS  Google Scholar 

  37. Matenoglou G, Evangelakis GA, Kosmidis C, Foulias S, Papadimitriou D, Patsalas P (2007) Pulsed laser deposition of amorphous carbon/silver nanocomposites. Appl Surf Sci 253:8155–8159

    Article  CAS  Google Scholar 

  38. Kalfagiannis N, Siozios A, Bellas DV, Toliopoulos D, Bowen L, Pliatsikas N, Cranton WM, Kosmidis C, Koutsogeorgis DC, Lidorikis E, Patsalas P (2016) Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring. Nanoscale 8:8236–8244

    Article  CAS  Google Scholar 

  39. Chen W, Thoreson MD, Ishii S, Kildishev AV, Shalaev VM (2010) Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Expr 18:5124–5134

    Article  CAS  Google Scholar 

  40. Abouda-Lachiheb M, Nafie N, Bouaicha M (2012) The dual role of silver during silicon etching in HF solution. Nanoscale ResLett 7:455

    Article  Google Scholar 

  41. Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  CAS  Google Scholar 

  42. Patsalas P, Logothetidis S (2003) Interface properties and structural evolution of TiN/Si and TiN/GaN heterostructures. J Appl Phys 100:989–998

    Article  Google Scholar 

  43. Sugihara S, Okazaki K, Suganuma K (1993) Wetting of silicon single crystal by silver and tin, and their interfaces. J Mater Sci 28:2455–2458

    Article  CAS  Google Scholar 

  44. Little SA, Begou T, Collins RW, Marsillac S (2012) Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry. Appl Phys Lett 100:051107

    Article  Google Scholar 

  45. Asoro MA, Damiano J, Ferreira PJ (2009) Size effects on the melting temperature of silver nanoparticles: in situ TEM observations. Microsc Microanal 15:706–707

    Article  Google Scholar 

  46. Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Lett 63:1525–1527

    Article  CAS  Google Scholar 

  47. Siozios Α, Koutsogeorgis DC, Lidorikis E, Dimitrakopulos GP, Pliatsikas N, Vourlias G, Kehagias T, Komninou P, Cranton W, Kosmidis C, Patsalas P (2015) Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding. J Phys D Appl Phys 48:285306

    Article  Google Scholar 

  48. Beszeda A, Gontier-Moya EG, Imre AW (2005) Surface ostwald-ripening and evaporation of gold beaded films on sapphire. Appl Phys A Mater Sci Process 81:673–677

    Article  CAS  Google Scholar 

  49. Waterhouse GIN, Bowmaker GA, Metson JB (2001) The thermal decomposition of silver (I, III) oxide: a combined XRD, FTIR and Raman spectroscopic study. Phys Chem Chem Phys 3:3838–3845

    Article  CAS  Google Scholar 

  50. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. M. Karakassides and Dr. K. Vasilopoulos of the Laboratory of Ceramic and Composite Materials of the University of Ioannina for the Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Patsalas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliatsikas, N., Vourlias, G. & Patsalas, P. Facile Synthesis of Tunable Nanostructured Plasmonic Templates by Electroless Deposition. Plasmonics 13, 467–474 (2018). https://doi.org/10.1007/s11468-017-0532-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0532-2

Keywords

Navigation