Skip to main content
Log in

Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photovoltaic (PV) effect of a bilayer anatase TiO2/BiFeO3 (BFO) film has been studied. The 20-nm ultrathin BFO layers were deposited on the fluorine-doped tin oxide (FTO) glass substrates by the chemical solution deposition method. An anatase TiO2 layer is deposited subsequently on the BFO surface via a screen-printing technique. It is found that the FTO/TiO2/Au cell exhibits negligible PV effect under solar exposure, while the one after introducing an ultrathin BFO film between TiO2 and FTO leads to a considerable PV effect with an open-circuit voltage of −0.58 V and a photocurrent density of 18.27 µA/cm2. The FTO/BiVO4 (BVO)/TiO2/Au cell was constructed to investigate the underlying mechanism for the observed effect. A negligible PV effect of the FTO/BVO/TiO2/Au cell indicates that the PV effect of the FTO/BFO/TiO2/Au cell arises mainly from a built-in electric field in the BFO film induced by the self-polarization. Our work opens up a new path to utilize TiO2 and may influence the future design of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Adriana, Recent Pat Eng 2, 157–164 (2008)

    Article  Google Scholar 

  2. B.O’. Regan, M. Grätzel, Nature 353, 737–740 (1998)

    Article  Google Scholar 

  3. M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Nanotechnogy 15, 1861–1865 (2004)

    Article  ADS  Google Scholar 

  4. M. Grätzel, Nature 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  5. B. Li, L.D. Wang, B.N. Kang, P. Wang, Y. Qiu, Sol. Energy Mater. Sol. Cells 90, 549–573 (2006)

    Article  Google Scholar 

  6. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang, M.D. Rossell, P. Yu, Y.H. Chu, J.F. Scott, J.W. Ager, L.W. Martin, R. Ramesh, Nat. Nanotechnol. 5, 143–147 (2010)

    Article  ADS  Google Scholar 

  7. J. Dho, Solid State Commun. 150, 2243–2247 (2010)

    Article  ADS  Google Scholar 

  8. G.H. Zhang, H. Wu, G.B. Li, Q.Z. Huang, C.H. Yang, F.Q. Huang, F.H. Liao, J.H. Lin, Sci. Rep. 3, 1265–1272 (2013)

    ADS  Google Scholar 

  9. P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A.F. Morral, Nat. Photonics 7, 306–310 (2013)

    Article  ADS  Google Scholar 

  10. Y.B. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J.S. Huang, Nature 10, 296–302 (2011)

    Article  Google Scholar 

  11. W. Dong, Y.P. Guo, B. Guo, H. Li, H.Z. Liu, T.W. Joel, ACS App. Mater. Interfaces 5, 6925–6929 (2013)

    Article  Google Scholar 

  12. R.X. Peng, F. Yang, X.H. Ouyang, Y. Liu, Y.S. Kim, Z.Y. Ge, Appl. Phys. A Mater. Sci. Process. 114, 429–434 (2014)

    Article  ADS  Google Scholar 

  13. Y.P. Guo, K. Suzuki, K. Nishizawa, T. Miki, K. Kato, J. Cryst. Growth 284, 190–196 (2005)

    Article  ADS  Google Scholar 

  14. W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li, H.Z. Liu, Mater. Lett. 88, 140–142 (2012)

    Article  Google Scholar 

  15. S.R. Basu, L.W. Martin, Y.H. Chu, M. Jajek, R. Ramesh, R.C. Rai, X. Xu, J.L. Musfeldt, Appl. Phys. Lett. 92, 091905-1–091905-3 (2008)

    ADS  Google Scholar 

  16. C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Nat. Mater. 8, 485–493 (2009)

    Article  ADS  Google Scholar 

  17. S.J. Clark, J. Robertson, Appl. Phys. Lett. 94, 022902-1–022902-3 (2009)

    ADS  Google Scholar 

  18. S.Y. Li, J. Morasch, A. Klein, Phys. Rev. B 88, 045428-1–04542812 (2013)

    ADS  Google Scholar 

  19. R. Schafranek, J. Schaffner, A. Klein, J. Eur. Ceram. Soc. 30, 187–192 (2010)

    Article  Google Scholar 

  20. M. Uda, A. Nakamura, T. Yamamoto, Y. Fujimoto, J. Electron Spectrosc. Relat. Phenom. 88–91, 643–648 (1998)

    Article  Google Scholar 

  21. S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Energy Environ. Sci. 5, 1781–1787 (2011)

    Article  Google Scholar 

  22. Y.S. Park, K.J. McDonald, K.S. Choi, Chem. Soc. Rev. 42, 2321–2337 (2013)

    Article  Google Scholar 

  23. A. Zhu, Q.D. Zhao, X.Y. Li, Y. Shi, ACS Appl. Mater. Interfaces 6, 671–679 (2014)

    Article  Google Scholar 

  24. Y.P. Guo, B. Guo, W. Dong, H. Li, H.Z. Liu, Nanotechnology 24, 275201-1–275201-8 (2013)

    ADS  Google Scholar 

  25. M.D. Glinchuk, E.A. Eliseev, V.A. Stephanovich, Phys. B 322, 356–370 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (NO.11074165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Song, L., Guo, Y. et al. Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer. Appl. Phys. A 117, 1301–1306 (2014). https://doi.org/10.1007/s00339-014-8536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8536-7

Keywords

Navigation