Skip to main content
Log in

Enhanced photovoltaic performance of sol–gel-derived FTO/TiO2/BiFeO3 heterostructure thin film obtained via modifying thickness of TiO2 transport layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3 (BFO) is a promising photovoltaic material and TiO2 tends to be an efficient electronic transmission material in perovskite solar cells. In this paper, FTO/TiO2/BFO heterostructure thin films with various TiO2 thicknesses (0, 50, 100, and 150 nm, respectively) are prepared successfully via a sol–gel method. The effects of TiO2 layer thickness on the microstructure, insulating and photovoltaic properties are characterized. All the thin films possess a polycrystalline structure that matches well with the perovskite phase. Significant improvement can be achieved with the introduction of the TiO2 electron transport layer. Among all tested films, the one with 100 nm-TiO2 exhibited superior photovoltaic performance. The champion power conversion efficiency (η) of 3.67% with fill factor of 0.64 could be achieved with an open-circuit voltage (Voc) of 1.64 V and a short-circuit photocurrent (Jsc) of 3.50 mA/cm2. This can be ascribed to the favorable effect of TiO2 to the electron transport and restriction to the electron–hole recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.S. Brody, F. Crowne, J. Electron. Mater. 4, 955–971 (1975)

    Article  Google Scholar 

  2. G. Yi, Z. Wu, M. Sayer, J. Appl. Phys. 64, 2717–2724 (1988)

    Article  Google Scholar 

  3. H. Ito, C. Takyu, H. Inaba, Electron. Lett. 27, 1221–1222 (1991)

    Article  Google Scholar 

  4. M. Ichiki, R. Maeda, Y. Morikawa, Y. Mabune, Appl. Phys. Lett. 84, 395–397 (2004)

    Article  Google Scholar 

  5. M. Ichiki, H. Furue, T. Kobayashi, R. Maeda, Appl. Phys. Lett. 87, 222903 (2005)

    Article  Google Scholar 

  6. X. Wang, Y. Lin, X. Ding, J. Jiang, J. Alloy. Compd. 509, 6585–6588 (2011)

    Article  Google Scholar 

  7. S.M. Selbach, M.A. Einarsrud, T. Grande, Chem. Mater. 21, 169 (2009)

    Article  Google Scholar 

  8. S.R. Basu, L.W. Martin, Y.H. Chu, M. Gajek, R. Ramesh, R.C. Rai, X. Xu, J.L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008)

    Article  Google Scholar 

  9. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Science 324, 63–66 (2009)

    Article  Google Scholar 

  10. A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, Appl. Phys. Lett. 92, 222901 (2008)

    Article  Google Scholar 

  11. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2010)

    Article  Google Scholar 

  12. Q. Gao, S. Yang, L. Lei, S. Zhang, Q. Cao, J. Xie, J. Li, Y. Liu, Chem. Lett. 44, 624–626 (2015)

    Article  Google Scholar 

  13. J.T.W. Wang, J.M. Ball, E.M. Barea, Nano Lett. 14, 724–730 (2014)

    Article  Google Scholar 

  14. B. Peng, G. Jungmann, C. Jäger, D. Haarer, H.W. Schmidt, M. Thelakkat, Coordin. Chem. Rev. 248, 1479–1489 (2004)

    Article  Google Scholar 

  15. A. Katoch, H. Kim, T. Hwang, S.K. Sang, J. Sol. Gel. Technol. 61, 77–82 (2012)

    Article  Google Scholar 

  16. A. Gautam, K. Singh, K. Sen, R.K. Kotnala, M. Singh, Mater. Lett. 65, 591–594 (2011)

    Article  Google Scholar 

  17. G.D. Hu, X. Cheng, W.B. Wu, C.H. Yang, Appl. Phys. Lett. 91, 232909 (2007)

    Article  Google Scholar 

  18. A.K. Chandiran, A. Yella, M.T. Mayer, P. Gao, M.K. Nazeeruddin, M. Grätzel, Adv. Mater. 26, 4309–4312 (2014)

    Article  Google Scholar 

  19. W. Cai, C. Fu, R. Gao, W. Jiang, X. Deng, G. Chen, J. Alloy. Compd. 617, 240–246 (2014)

    Article  Google Scholar 

  20. C.M. Raghavan, W.K. Jin, S.K. Sang, J. Am. Ceram. Soc. 97, 235–240 (2014)

    Article  Google Scholar 

  21. Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)

    Article  Google Scholar 

  22. P.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Appl. Phys. Lett. 103, 022910 (2013)

    Article  Google Scholar 

  23. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  24. H.-S. Kim, S.H. Im, N.-G. Park, J. Phys. Chem. C 118, 5616 (2014)

    Article  Google Scholar 

  25. S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Appl. Phys. Lett. 95, 062909 (2009)

    Article  Google Scholar 

  26. H.J. Feng, M. Wang, F. Liu, B. Duan, J. Tian, X. Guo, J. Alloy. Compd. 628, 311–316 (2015)

    Article  Google Scholar 

  27. X.J. Ding, L. Ni, S.B. Ma, Y.S. Ma, L.X. Xiao, Z.J. Chen, Acta Phys. Sin 64, 038802 (2015)

    Google Scholar 

  28. H. Yang, H.M. Luo, H. Wang, I.O. Usov, N.A. Suvorova, M. Jain, D.M. Feldmann, P.C. Dowden, R.F. DePaula, Q.X. Jia, Appl. Phys. Lett. 92, 102113 (2008)

    Article  Google Scholar 

  29. P. Sathishkumar, R.V. Mangalaraja, H. Mansilla, M.A. Gracia-Pinilla, S. Anandan, Appl. Catal. B Environ. 160–161, 692–700 (2014)

    Article  Google Scholar 

  30. Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 4, 2880–2884 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51272191, 51372181, 51672198), Innovative Public Service Platform Special Plan of Shandong (Grant Nos. 2014CXPT002), Primary Research Plan of Shandong Province (Grant Nos. 2016CYJS07A03-2), Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2016-181-11, 2017-41-1, 2017-41-3), and Central Guiding Local Science and Technology Development Special Funds (Grant Nos. 2060503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, H.T., Sun, H.J., Li, M. et al. Enhanced photovoltaic performance of sol–gel-derived FTO/TiO2/BiFeO3 heterostructure thin film obtained via modifying thickness of TiO2 transport layer. J Mater Sci: Mater Electron 30, 933–938 (2019). https://doi.org/10.1007/s10854-018-0364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0364-7

Navigation