Skip to main content
Log in

Synthesis and electrical properties of Y2O3: Dy3+ & Eu3+ nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Yttrium oxide (Y2O3) doped with Dy3+ & Eu3+ nanoparticle has been synthesized by solution combustion method. The formation of the compounds has been checked by X-ray diffraction method. The crystallite/particle size has been measured using Scherrer formula as well as by transmission electron microscopy which show that the size of the particles are in the nanorange. The frequency and temperature dependent variation of impedance Z*, dielectric constant (ε′), dielectric loss (ε″) and AC conductivity (σ) of Y2O3: Dy3+ & Eu3+ nanoparticles were also measured. The real and imaginary part of complex impedance makes semicircle in the complex plane. The center of semicircle arc is found to be shifted toward higher value of real part of impedance with increasing temperature. This indicates that the conductivity of the material increases with the increase in temperature. Cole–Cole plots demonstrate that the dielectric relaxation process occurs in the material. The AC conductivity (σ AC) increases with the increase in temperature within the frequency range of 103–107 Hz confirming the hopping of the electrons in the conduction process. The value of impedance decreases sharply with increasing frequency and attains minimum value after 105 Hz at all temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.B. Jackson et al., J. Non-Cryst. Solid. 885, 227–230 (1998)

    Google Scholar 

  2. Y.-J. Cho, J.-H. Shin, J.-K.Y. Lee, Y.-B. Kim, D.-K. Choi, In: 7th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications, Cambridge, UK, February 20–22 (2008)

  3. F. Abraham, M.F. Debreuille-Gresse, G. Mairesse, G. Nowogrocki, Solid State Ion 529, 28–30 (1988)

    Google Scholar 

  4. D.-G. Lim, J.-H. Lee, J. Yi, J. Korean Phys. Soc. 40, 167–171 (2002)

    Google Scholar 

  5. R.W. Siegel, Annu. Rev. Mater. Sci. 21, 559–578 (1991)

    Article  ADS  Google Scholar 

  6. R.H. Kodama, J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  ADS  Google Scholar 

  7. Z. Pei, H. Xu, Y. Zhang, J. Alloy. Compd. 468, L5–L8 (2009)

    Article  Google Scholar 

  8. J. Chen, J.X. Zhao, Sensors 12, 2414–2435 (2012)

    Article  Google Scholar 

  9. V. Bedekar, D.P. Dutta, M. Mohapatr, S.V. Godbole, R. Ghildiyal, A.K. Tyagi, Nanotechnology 20, 125707 (9 pp) (2009)

  10. D.P. Dutta, N. Manoj, A.K. Tyagi, J. Lumines. 131, 1807–1812 (2011)

    Article  ADS  Google Scholar 

  11. S. Mukherjee, T. P. Kaloni, J. Nanopart. Res. 14, 814 (10 pp) (2012)

  12. Y. zhu, Y. Zhou, Appl. Phys. A Mater. Sci. Process. 92, 275–278 (2008)

    Article  ADS  Google Scholar 

  13. M. Ocana, J. European Ceram. Soc. 21, 931–939 (2001)

    Article  Google Scholar 

  14. T. Tsuzuki, P.G. Mccormick, Acta Mater. 48, 2795–2801 (2000)

    Article  Google Scholar 

  15. R.H. Chen, L.F. Chen, C.T. Chia, J. Phys. Condens. Matter 19, 086–225 (2007)

    Google Scholar 

  16. S. Timur, Y.H. Atabaev, H.K. Kim, Nanoscale Res. Latter. 7, 556 (2012)

    Article  ADS  Google Scholar 

  17. A.I. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  MATH  ADS  Google Scholar 

  18. L.N. Zhang, G.R. Li, S.C. Zhao, A.L. Ding, Q.R. Yin, Integr. Ferroelectr. 79, 253 (2006)

    Article  Google Scholar 

  19. J.S. Kim, B.C. Choi, J.W. Chung, J.H. Jeong, S.B. Cho, J. Korean Phys. Soc. 52, 410 (2008)

    Article  ADS  Google Scholar 

  20. Y.J. Wong, J. Hassan, M. Hashim, J. Alloys Compd. 571, 138–144 (2013)

    Article  Google Scholar 

  21. L.K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)

    Article  Google Scholar 

  22. A.K. Jonscer, J. Phys. D Appl. Phys. 32, R57–R70 (1999)

    Article  ADS  Google Scholar 

  23. M. Chanda, Science of engineering materials (The Macmillan Company of India Ltd., New Delhi, 1980) vol. 3, p. 103

  24. V. Rangarajan, G. Rangarajan, Materials Science. (Tata McGraw-Hill Education, New Delhi, 2004) p. 590

  25. C.K. Suman, K. Prasad, R.N.P. Choudhary, Mater. Chem. Phys. 97, 425–430 (2006)

    Article  Google Scholar 

  26. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)

    Article  ADS  Google Scholar 

  27. A.K. Joncher, Phys. Thin Films 11, 232 (1980)

    Google Scholar 

  28. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  29. M.D. lngram, Phys. Chem. Glasses 28(6), 215 (1987)

    Google Scholar 

  30. A.R. Long, Adv. Phys. 31, 553–637 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial assistance from BRFST-IPR, Gandhinagar, Gujarat, for the present work is gratefully acknowledged. Authors Aradhana Jyotsana and Gulab Singh Maurya are thankful to BRFST-IPR for providing the financial support as J.R.F. and SRF, respectively. One of authors (AKS) would like to thank to Department of Science and Technology for DST Young Scientist financial support. The authors are also thankful to Dr. M. Roy, M.L. Sukhadia University, and Udaipur for his valuable comments and suggestions. Authors gratefully acknowledge SAIF, Chandigarh, Panjab University for providing the XRD and TEM facility and Prof. Ram Kripal for providing impedance spectroscopy experimental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awadhesh K. Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyotsana, A., Maurya, G.S., Srivastava, A.K. et al. Synthesis and electrical properties of Y2O3: Dy3+ & Eu3+ nanoparticles. Appl. Phys. A 117, 1269–1274 (2014). https://doi.org/10.1007/s00339-014-8516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8516-y

Keywords

Navigation