Skip to main content
Log in

Dependence of the selectivity of SnO2 nanorod gas sensors on functionalization materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Effects of functionalization materials on the selectivity of SnO2 nanorod gas sensors were examined by comparing the responses of SnO2 one-dimensional nanostructures functionalized with CuO and Pd to ethanol and H2S gases. The response of pristine SnO2 nanorods to 500 ppm ethanol was similar to 100 ppm H2S. CuO-functionalized SnO2 nanorods showed a slightly stronger response to 100 ppm H2S than to 500 ppm ethanol. In contrast, Pd-functionalized SnO2 nanorods showed a considerably stronger response to 500 ppm ethanol than to 100 ppm H2S. In other words, the H2S selectivity of SnO2 nanorods over ethanol is enhanced by functionalization with CuO, whereas the ethanol selectivity of SnO2 nanorods over H2S is enhanced by functionalization with Pd. This result shows that the selectivity of SnO2 nanorods depends strongly on the functionalization material. The ethanol and H2S gas sensing mechanisms of CuO- and Pd-functionalized SnO2 nanorods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Tamaki, T. Maekawa, N. Miura, N. Yamazoe, Sens. Actuators B 9, 197–203 (1992)

    Article  Google Scholar 

  2. J.H. Yoon, J.S. Kim, Met. Mater. Int. 00, 773–777 (2010)

    Article  Google Scholar 

  3. L. He, Y. Jia, F. Meng, M. Li, J. Liu, J. Mater. Sci. 44, 4326–4333 (2009)

    Article  ADS  Google Scholar 

  4. A. Khanna, R. Kumar, S.S. Bhatti, Appl. Phys. Lett. 82, 4388–4390 (2003)

    Article  ADS  Google Scholar 

  5. X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang, T. Wang, J. Phys. Chem. C112, 12157–12160 (2008)

    Google Scholar 

  6. F.N. Meng, X.P. Di, H.W. Dong, Y. Zhang, Sens. Actuators B 182, 197–204 (2013)

    Article  Google Scholar 

  7. A. Chowdhri, P. Sharma, V. Gupta, K. Sreenivas, K.V. Rao, J. Appl. Phys. 92, 2172–2179 (2002)

    Article  ADS  Google Scholar 

  8. G. Sarala, S. Manorama, V.J. Rao, High sensitivity and selectivity of an SnO2 sensor to H2S at around 100 ◦C. Sens. Actuators B 28, 31–37 (1995)

    Article  Google Scholar 

  9. I.S. Hwang, J.K. Choi, S.J. Kim, K.Y. Dong, J.H. Kwon, B.K. Ju, J.H. Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO. Sens. Actuators B 142, 105–110 (2009)

    Article  Google Scholar 

  10. S. Kim, H. Na, S. Choi, D. Kwak, H. Kim, Novel growth of CuO-functionalized, branched SnO2 nanowires and their application to H2S sensors. J. Phys. D Appl. Phys. 45, 205301–205308 (2012)

    Article  ADS  Google Scholar 

  11. H. Kim, C. Jin, S. Park, S. Kim, C. Lee, H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens. Actuators B 161, 594–599 (2012)

    Article  Google Scholar 

  12. D.E. Williams, Solid State Gas Sensors (Hilger, Bristol, 1987)

    Google Scholar 

  13. O. Safonova, G. Delabouglise, B. Chenevier, A. Gaskov, M. Labeau, CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh. Mater. Sci. Eng. C 21, 105–111 (2002)

    Article  Google Scholar 

  14. A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34, 151–180 (2004)

    Article  ADS  Google Scholar 

  15. S. Morrison, Selectivity in semiconductor gas sensors. Sens. Actuators B 12, 425–440 (1987)

    Article  Google Scholar 

  16. J. Li, H. Fan, X. Jia, W. Yang, P. Fang, Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route. Appl. Phys. A 98, 537–542 (2010)

    Article  ADS  Google Scholar 

  17. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sens. Actuators, B 49, 121–125 (1998)

    Article  Google Scholar 

  18. T. Pagnier, M. Boulova, A. Galerie, A. Gaskov, G. Lucazeau, Reactivity of SnO2–CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study. Sens. Actuators B Chem. 71, 134–139 (2000)

    Article  Google Scholar 

  19. J. Dunn, C. Muzenda, Thermal oxidation of covellite (CuS). Thermochim. Acta 369, 117–123 (2001)

    Article  Google Scholar 

  20. S. Wang, Q. Huang, X. Wen, X. Li, S. Yang, Thermal oxidation of Cu2S nanowires: a template method for the fabrication of mesoscopic CuO (x = 1, 2) wires. Phys. Chem. Chem. Phys. 4, 3425–3429 (2002)

    Article  Google Scholar 

  21. C. Mu, J. He, Confined conversion of CuS nanowires to CuO nanotubes by annealing-induced diffusion in nanochannels. Nanoscale Res. Lett. 6, 150–155 (2011)

    Article  ADS  Google Scholar 

  22. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)

    Article  Google Scholar 

  23. J.K. Choi, I.S. Hwang, S.J. Kim, J.S. Park, S.S. Park, U. Jeong, Y.C. Kang, J.H. Lee, Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B 150, 191–199 (2010)

    Article  Google Scholar 

  24. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, New methods for supporting palladium on a tin oxide gas sensor. Sens. Actuators B 9, 71–78 (1992)

    Article  Google Scholar 

  25. M. Yuasa, T. Masaki, T. Kida, K. Shimanoe, N. Yamazoe, Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuators B 136, 99–104 (2009)

    Article  Google Scholar 

  26. L. Liu, T. Zhang, S. Li, L. Wang, T. Tian, Preparation, characterization, and gas-sensing properties of Pd-doped In2O3 nanofibers. Mater. Lett. 63, 1975–1977 (2009)

    Article  Google Scholar 

  27. C.-B. Lim, S. Oh, Microstructure evolution and gas sensitivities of Pd-doped SnO2-based sensor prepared by three different catalyst-addition process. Sens. Actuators B 30, 223–231 (1996)

    Article  Google Scholar 

  28. N. Yamazoe, K. Kurokawa, T. Seiyama, Effects of additives on semiconductor gas sensor. Sens. Actuators 4, 283–289 (1983)

    Article  Google Scholar 

  29. G. Tournier, C. Pijolat, R. Lalauze, B. Patissier, Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium. Sens. Actuators B 26–27, 24–28 (1995)

    Article  Google Scholar 

  30. Y.C. Lee, H. Huang, O.K. Tan, M.S. Tse, Semiconductor gas sensor based on Pd doped SnO2 nanorod thin films. Sens. Actuators B 132, 239–242 (2008)

    Article  Google Scholar 

  31. Y. Zhang, Q. Xiang, J. Xu, P. Xu, Q. Pan, F. Li, Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances. J. Mater. Chem. 19, 4701–4706 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2010-0020163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, S., Ko, H. et al. Dependence of the selectivity of SnO2 nanorod gas sensors on functionalization materials. Appl. Phys. A 117, 1259–1267 (2014). https://doi.org/10.1007/s00339-014-8514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8514-0

Keywords

Navigation