Skip to main content
Log in

Stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article presents first report on the highly stable and luminescent wurtzite CdS, ZnS and CdS/ZnS quantum dots (QDs) where the role of precursor selection at room temperature is the key. X-ray diffraction (XRD), optical absorbance spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy have been employed in order to characterize these QDs. XRD indicates the formation of wurtzite CdS, ZnS and CdS/ZnS system. Broadening in XRD peaks revealed the reduction in particle size such as 4.2, 5.2 and 5.8 nm for CdS, ZnS and CdS/ZnS, respectively, compared to their bulk counterparts. Blue shift in absorbance has been observed in each case as particles size decreases. The photoluminescence intensity emission of CdS/ZnS core/shell was strongly superior from that observed in individual CdS and ZnS nanoparticles. We also propose that the core and shell interface leads to favourable conditions that instigate photoluminescence emission in CdS/ZnS core/shell system. One notable result of this work obtained from the photoluminescence analysis is the significant reduction in full width at half maxima, in emission peak of core/shell structure which shows the enhanced monochromaticity. We have found that OH, CH2 and C–O functional groups are present on the QDs surface and that is why these QDs can be easily attachable to biomolecules. TEM analysis has been employed for confirmation of particle size and found to be 5.3, 5.8 and 6.2 nm for CdS, ZnS and CdS/ZnS structures, respectively.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Nirmal, L. Brus, Acc. Chem. Res. 32, 407 (1999)

    Article  Google Scholar 

  2. A.P. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  3. H. Weller, Angew Chem. Int. Ed. Engl. 32, 41(1993)

  4. U. Banin, Y.W. Cao, D. Katz, O. Millo, Nature 400, 542 (1999)

    Article  ADS  Google Scholar 

  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  ADS  Google Scholar 

  6. W.C.W. Chan, S. Nie, Science 281, 2016 (1998)

    Article  ADS  Google Scholar 

  7. G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, J. Am. Chem. Soc. 121, 8122 (1999)

    Article  Google Scholar 

  8. K. Rajeshwar, de R. Tacconi, C.R. Chenthamarakshan, Chem. Mater. 13, 2765 (2001)

  9. A.P. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  10. M.A. Anderson, S. Gorer, R.M. Penner, J. Phys. Chem. B 101, 5895 (1997)

    Article  Google Scholar 

  11. G. Henshaw, I.P. Parkin, G. Shaw, Chem. Commun. 10, 1095 (1996)

    Article  Google Scholar 

  12. T. Hirai, Y. Bando, I. Komasawa, J. Phys. Chem. B 106, 8967 (2002)

    Article  Google Scholar 

  13. M. Kuno, J.K. Lee, B.O. Dabbousi, F.V. Mikulec, M.G. Bawendi, J. Chem. Phys. 106, 9869 (1997)

    Article  ADS  Google Scholar 

  14. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997)

    Article  Google Scholar 

  15. X. Peng, M.C. Schlamp, A. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  Google Scholar 

  16. F. Zuoling, Z. Shihong, S. Jinsheng, Z. Siyuan, Mater. Res. Bull. 40, 1591 (2005)

    Article  Google Scholar 

  17. B. Liu, G.Q. Xu, L.M. Gan, C.H. Chew, W.S. Li, Z.X. Shen, J. Appl. Phys. 89, 1059 (2001)

    Article  ADS  Google Scholar 

  18. P.K. Sahoo, S.S. Kamal Kalyan, T. Kumar Jagadeesh, B. Sreedhar, A.K. Singh, S.K. Srivastava, Def. Sci. J. 59(4), 447 (2009)

  19. W.C.W. Chan, S.M. Nie, Science 281, 2016 (1998)

    Article  ADS  Google Scholar 

  20. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)

    Article  ADS  Google Scholar 

  21. H.J. Eisler, V.C. Sundar, M.G. Bawendi, M. Walsh, H.I. Smith, V. Klimov, Appl. Phys. Lett. 80, 4614 (2002)

    Article  ADS  Google Scholar 

  22. M.C. Schlamp, X.G. Peng, A.P. Alivisatos, J. Appl. Phys. 82, 5837 (1997)

    Article  ADS  Google Scholar 

  23. T. Yamamoto, S. Kishimoto, S. Lida, Phys. B 308, 916 (2001)

    Article  ADS  Google Scholar 

  24. C. Seydel, Science 30, 80 (2003)

    Article  Google Scholar 

  25. C.S. Wu, M.K.K. Oo, J.M. Cupps, X. Fan, Biosens. Bioelectron. 26, 3870 (2011)

    Article  Google Scholar 

  26. C.Y. Zhang, J. Hu, Anal. Chem. 82, 1921 (2010)

    Article  Google Scholar 

  27. N.C. Cady, J.W. Lee, R.S. Foote (eds.), Micro and Nanotechnology in Bioanalysis: Methods and Protocols (Springer, Berlin, 2009), pp. 544, 367

  28. J.H. Kim, S. Chaudhary, M. Ozkan, Nanotechnology 18, 195105 (2007)

    Article  ADS  Google Scholar 

  29. J.J. Ramsden, S.E. Webber, M. Gratzel, J. Phys. Chem. 89, 2740 (1985)

    Article  Google Scholar 

  30. M.O. Milligan, J. Phys. Chem. 38, 797 (1934)

    Article  Google Scholar 

  31. N. Ghows, M.H. Entezari, Ultrason. Sonochem. 18, 269 (2011)

    Article  Google Scholar 

  32. C. Yuanrong, L. Zhe, L. Hao, Z. Liang, Y. Bai, Nanotechnology 25, 115601 (2014)

    Article  Google Scholar 

  33. B.D. Cullity, Elements of X-Ray diffraction (Addison-Wesley Publishing Company Inc., London, 1978)

  34. A. Rahdar, J. Nanostructure Chem. 3, 10 (2013)

    Article  Google Scholar 

  35. P. Thangadurai, S. Balaji, P.T. Manoharan, Nanotechnology 19, 435708 (2008)

    Article  ADS  Google Scholar 

  36. A. Mercy, R. Samuel Selvaraj, B. Milton Boaz, A. Anandhi, R. Kanagadurai, Indian J. Pure Appl. Phys. 51, 448 (2013)

  37. A. Sengupta, B. Jiang, K.C. Mandal, J.Z. Zhang, J. Phys. Chem. B 103, 3128 (1999)

    Article  Google Scholar 

  38. M.C. Brelle, J.Z. Zhang, L. Nguyen, R.K. Mehra, J. Phys. Chem. A. 103, 10194 (1999)

  39. C. Unni, D. Philip, K. Gopchandran, Spectrochim. Acta A. 71, 1402 (2008)

    Article  ADS  Google Scholar 

  40. N. Chestnoy, T.D. Harris, R. Hull, L.E. Brus, J. Phys. Chem. 90, 3393 (1986)

    Article  Google Scholar 

  41. B.C. Zhang, Y.H. Shen, A.J. Xie, L.B. Yang, X.F. Wang, Mater. Chem. Phys. 116, 392 (2009)

    Article  Google Scholar 

  42. Y.C. Cao, J.H. Wang, J. Am. Chem. Soc. 126, 14336 (2004)

    Article  Google Scholar 

  43. Z. Yang, Z. Zuo, H.M. Zhou, W.P. Beyermann, J.L. Liu, J. Cryst. Growth 314, 97 (2011)

    Article  ADS  Google Scholar 

  44. K. Jayanthi, S. Chawla, H. Chander, Cryst. Res. Technol. 10, 976 (2007)

    Article  Google Scholar 

  45. B.O. Dabbousi, J. Rodriguez-Viezo, F.V. Mikulec, J. Phy. Chem. B. 101, 9463–9475 (1997)

  46. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)

    Article  ADS  Google Scholar 

  47. M.A. Hines, P.T. Guyotsionnes, J. Phys. Chem. 100, 468 (1996)

    Article  Google Scholar 

  48. X.G. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  Google Scholar 

  49. H. Fujii, K. Inata, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Sci. 36, 527–532 (2001)

    Article  ADS  Google Scholar 

  50. K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma Process. Polym. 3, 392 (2006)

    Article  Google Scholar 

  51. R.A. Sperling, W.J. Parak, Phil. Trans. R. Soc. A 368, 1333–1383 (2010)

    Article  ADS  Google Scholar 

  52. W.C. Chan, S. Nie, Science 281, 2016 (1998)

    Article  ADS  Google Scholar 

  53. S.F. Wuister, I. Swart, F.V. Driel, S.G. Hickey, C. Donega, Nano Lett. 3, 503 (2003)

    Article  ADS  Google Scholar 

  54. J. Gubicza, G. Tichy, T. Ungára, Powder Diffr. 20(4), 366 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragini Raj Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Kumar, M., Barman, P.B. et al. Stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots. Appl. Phys. A 117, 1249–1258 (2014). https://doi.org/10.1007/s00339-014-8513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8513-1

Keywords

Navigation