Skip to main content
Log in

Facile Synthesis and Characterization of CdSe/ZnSe Core/Shell and ZnxCd1−xSe Alloy Quantum Dots via Non-organometallic Route

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hexadecylamine (HDA) capped CdSe/ZnSe core/shell and ZnxCd1−xSe alloy quantum dots (QDs) have been synthesized successfully via a non-organometallic, hot injection method. The optical, structural and morphological properties of the as-synthesized QDs were determined by using, UV–visible (UV–Vis) and photoluminescence spectroscopy, X-ray diffraction and transmission electron microscopy (TEM). The effect of reaction time and temperature on the core/shell and alloy formation were investigated in detail. The addition of ZnSe precursor to the pre-synthesized HDA capped CdSe QDs at 230 °C produced core/shell CdSe/ZnSe QDs whereas at 250 °C an alloy QDs were obtained initially which later transformed to core/shell structure with time. On the other hand, the immediate addition of ZnSe precursor to the hot CdSe-precursor solution in HDA at 230 °C resulted in HDA capped ZnxCd1−xSe alloy QDs. The optical and structural characterisation shows that the as-synthesised core–shell and alloy QDs are of high quality. This method is simple, and fast for the preparation of core/shell and alloy binary QDs and will encourage their synthesis for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Pu, F. Cai, D. Wang, J. X. Wang, and J. F. Chen (2018). Ind. Eng. Chem. Res. 57, 1790.

    Article  CAS  Google Scholar 

  2. A. T. Nguyen, W.-H. Lin, Y.-H. Lu, Y.-D. Chiou, and Y.-J. Hsu (2014). Appl. Catal. A 476, 140.

    Article  CAS  Google Scholar 

  3. C. T. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, and L. Mocan (2017). Int. J. Nanomed. 12, 5421.

    Article  CAS  Google Scholar 

  4. N. Tsolekile, S. Parani, M. C. Matoetoe, S. P. Songca, and O. S. Oluwafemi (2017). Nano-Struct. Nano-Objects 12, 46.

    Article  CAS  Google Scholar 

  5. K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U. U. Gomes, M. Jayachandran, and M. Maaza (2016). Mater. Sci. Eng. B 210, 1.

    Article  CAS  Google Scholar 

  6. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann (2008). Nat. Methods 5, 763.

    Article  CAS  PubMed  Google Scholar 

  7. C.-C. Chen, Y.-J. Hsu, Y.-F. Lin, and S.-Y. Lu (2008). J. Phys. Chem. C 112, 17964.

    Article  CAS  Google Scholar 

  8. C. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.

    Article  CAS  Google Scholar 

  9. M. J. Almendral-Parra, A. Alonso-Mateos, J. F. Boyero-Benito, S. Sánchez-Paradinas, and E. Rodríguez-Fernández (2014). J. Nanomater. 5.

  10. V. Biju, T. Itoh, A. Anas, A. Sujith, and M. Ishikawa (2008). Anal. Bioanal. Chem. 391, 2469.

    Article  CAS  PubMed  Google Scholar 

  11. Y.-F. Lin, Y.-J. Hsu, S.-Y. Lu, K.-T. Chen, and T.-Y. Tseng (2007). J. Phys. Chem. C 111, 13418.

    Article  CAS  Google Scholar 

  12. G. K. Grandhi and R. Viswanatha (2016). J. Phys. Chem. C 120, 19785.

    Article  CAS  Google Scholar 

  13. R. K. Ratnesh and M. S. Mehata (2015). AIP Adv. 5, 097114.

    Article  CAS  Google Scholar 

  14. O. S. Oluwafemi, N. Revaprasadu, and O. O. Adeyemi (2010). Mater. Lett. 64, 1513.

    Article  CAS  Google Scholar 

  15. O. S. Oluwafemi, V. Ncapayi, O. O. Adeyemi, and S. P. Songca (2014). Mater. Lett. 123, 165.

    Article  CAS  Google Scholar 

  16. O. S. Oluwafemi, V. Ncapayi, O. Olubomehin, O. A. Osibote, and S. P. Songca (2014). Mater. Sci. Semicond. Process. 27, 427.

    Article  CAS  Google Scholar 

  17. O. S. Oluwafemi, S. Mohan, O. Olubomehin, O. A. Osibote, and S. P. Songca (2016). J. Mater. Sci. Mater. Electron. 27, 3880.

    Article  CAS  Google Scholar 

  18. S. M. Farkhani and A. Valizadeh (2014). IET Nanobiotechnol. 8, 59.

    Article  CAS  Google Scholar 

  19. D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole (2015). J. Alloys Compd. 636, 395.

    Article  CAS  Google Scholar 

  20. A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta, and R. Viswanatha (2013). J. Phys. Chem. Lett. 4, 3544.

    Article  CAS  Google Scholar 

  21. Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran, A. K. Budniak, F. Horani, J. Dehnel, A. Sashchiuk, and E. Lifshitz (2017). Chem. Commun. 53, 1002.

    Article  CAS  Google Scholar 

  22. P. Reiss, M. Protiere, and L. Li (2009). Small 5, 154.

    Article  CAS  PubMed  Google Scholar 

  23. S. N. Sharma, H. Sharma, S. Singh, R. M. Mehra, G. Singh, and S. M. Shivaprasad (2010). Mater. Res. Innov. 14, 62.

    Article  CAS  Google Scholar 

  24. A. M. Kadim (2017). J. Metastab. Nanocryst. 29, 17.

    Article  Google Scholar 

  25. B. C. Fitzmorris, Y.-C. Pu, J. K. Cooper, Y.-F. Lin, Y.-J. Hsu, Y. Li, and J. Z. Zhang (2013). Appl. Mater. Interfaces 5, 2893.

    Article  CAS  Google Scholar 

  26. E. Groeneveld, L. Witteman, M. Lefferts, X. Ke, S. Bals, G. V. Tendeloo, and C. M. Donega (2013). ACS Nano 9, 7913.

    Article  CAS  Google Scholar 

  27. Y.-C. Pu and Y.-J. Hsu (2014). Nanoscale 6, 3881.

    Article  CAS  PubMed  Google Scholar 

  28. S. Parani, K. Pandian, and O. S. Oluwafemi (2018). Int. J. Biol. Macromol. 107, 635.

    Article  CAS  PubMed  Google Scholar 

  29. W. W. Yu, L. Qu, W. Guo, and X. Peng (2003). Chem. Mater. 15, 2854.

    Article  CAS  Google Scholar 

  30. N. Grumbach, R. K. Capek, E. Tilchin, A. Rubin-Brusilovski, J. Yang, Y. Ein-Eli, and E. Lifshitz (2015). J. Phys. Chem. C 119, 12749.

    Article  CAS  Google Scholar 

  31. S. J. Lim, A. Schleife, and A. M. Smith (2017). Nat. Commun. 8, 14849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. Asano, K. Arai, M. Kita, and T. Omata (2017). Mater. Res. Express 4, 106501.

    Article  CAS  Google Scholar 

  33. J. Cho, Y. K. Jung, J. K. Lee, and H. S. Jung (2017). Langmuir 33, 3711.

    Article  CAS  PubMed  Google Scholar 

  34. S. Parani, N. Tsolekile, K. Pandian, and O. S. Oluwafemi (2017). J. Mater. Sci. Mater. Electron. 28, 11151.

    Article  CAS  Google Scholar 

  35. S. Sadhu and A. Patra (2008). J. Chem. Sci. 120, 557.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National, Research Foundation (NRF), South Africa, University of Johannesburg, South Africa, Faculty of Science Research Committee, and University research Committee, South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatobi Samuel Oluwafemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwafemi, O.S., Ncapayi, V., Parani, S. et al. Facile Synthesis and Characterization of CdSe/ZnSe Core/Shell and ZnxCd1−xSe Alloy Quantum Dots via Non-organometallic Route. J Clust Sci 30, 161–169 (2019). https://doi.org/10.1007/s10876-018-1471-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1471-6

Keywords

Navigation