Skip to main content

Advertisement

Log in

Hydrogenated amorphous carbon thin films deposited by plasma-assisted chemical vapor deposition enhanced by electrostatic confinement: structure, properties, and modeling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hydrogenated amorphous carbon (a-C:H) is a state-of-the-art material with established properties such as high mechanical resistance, low friction, and chemical inertness. In this work, a-C:H thin films were deposited by plasma-assisted chemical vapor deposition. The deposition process was enhanced by electrostatic confinement that leads to decrease the working pressure achieving relative high deposition rates. The a-C:H thin films were characterized by elastic recoil detection analysis, Rutherford backscattering spectroscopy, scanning electron microscopy, Raman spectroscopy, and nanoindentation measurements. The hydrogen content and hardness of a-C:H thin films vary from 30 to 45 at% and from 5 to 15 GPa, respectively. The hardness of a-C:H thin films shows a maximum as a function of the working pressure and is linearly increased with the shifting of the G-peak position and I D/I G ratio. The structure of a-C:H thin films suffers a clustering process at low working pressures. A physical model is proposed to estimate the mean ion energy of carbonaceous species arriving at the surface of a-C:H thin films as a function of processing parameters as pressure and voltage and by considering fundamentals scattering events between ion species and neutral molecules and atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Donnet, A. Erdemir, Tribology of Diamond-like Carbon Films. Fundamentals and Applications. st edn (Springer, Berlin, 2008)

    Book  Google Scholar 

  2. J. Robertson, Mat. Sci. Eng. R. 37, 129 (2002)

    Article  Google Scholar 

  3. S. Neuville, A. Matthews, Thin Solid Films 515, 6619 (2007)

    Article  ADS  Google Scholar 

  4. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  5. G. Capote, L.F. Bonetti, L.V. Santos, V.J. Trava-Airoldi, E.J. Corat, Thin Solid Films 516, 4011 (2008)

    Article  ADS  Google Scholar 

  6. J. Robertson, E.P. O’Reilly, Phys. Rev. 35, 2946 (1987)

    Article  ADS  Google Scholar 

  7. M. Smietana, J. Szmidt, M.L. Korwin-Pawlowski, N. Miller, A.A. Elmustafa, Diam. Relat. Mater. 17, 1655 (2008)

    Article  ADS  Google Scholar 

  8. V.J. Trava-Airoldi, L.F. Bonetti, G. Capote, J.A. Fernandes, E. Blando, R. Hubler, P.A. Radi, L.V. Santos, E.J. Corat, Thin Solid Films 516, 272 (2007)

    Article  ADS  Google Scholar 

  9. V.J. Trava-Airoldi, L.F. Bonetti, G. Capote, L.V. Santos, E.J. Corat, Surf. Coat. Technol. 202, 549 (2007)

    Article  Google Scholar 

  10. S.C. Gallo, A.E. Crespi, F. Cemin, C.A. Figueroa, I.J.R. Baumvol, IEEE Trans. Plasma Sci. 39, 11 (2011)

    Google Scholar 

  11. S.M.M. Dufrène, F. Cemin, M.F. Soares, C. Aguzzoli, M.E.H. Maia da Costa, I.J.R. Baumvol, C.A. Figueroa (under review in Surf. Coat. Technol.)

  12. S. Peter, K. Graupner, D. Grambole, F. Richter, J. Appl. Phys. 102(053304), 053304 (2007)

    Article  ADS  Google Scholar 

  13. M. Weiler, J. Robertson, S. Sattel, V.S. Veerasamy, K. Jung, H. Ehrhardt, Diam. Relat. Mater. 4, 268 (1995)

    Article  ADS  Google Scholar 

  14. J. Zhou, I.T. Martin, R. Ayers, E. Adams, D. Liu, E.R. Fisher, Plasma Sources Sci. Technol. 15, 714 (2006)

    Article  ADS  Google Scholar 

  15. R.R. Arslanbekov, A.A. Kudryavtsev, I.A. Movtchan, IEEE Trans. Plasma Sci. 24, 3 (1996)

    Article  Google Scholar 

  16. I.J.R. Baumvol, Suf. Sci. Rep. 36, 1 (1999)

    Article  ADS  Google Scholar 

  17. W. Eckstein, M. Mayer, The simulation used the SIMNRA software. Nucl. Instrum. Methods B153, 337 (1999)

    Article  ADS  Google Scholar 

  18. J.P.B. Biersack, G.L. Haggmark, The simulation used the SRIM software. Nucl. Instrum. Methods 174, 257 (1980)

    Article  ADS  Google Scholar 

  19. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  20. T. Som, M. Malhotra, N.V. Kulkarni, S. Kumar, Phys. B 355, 72 (2005)

    Article  ADS  Google Scholar 

  21. S. Peter, M. Günther, D. Hauschild, D. Grambole, F. Richter, Vacuum 84, 958 (2010)

    Article  Google Scholar 

  22. M. Silinskas, A. Grigonis, V. Kulikauskas, I. Manika, Thin Solid Films 516, 1683 (2008)

    Article  ADS  Google Scholar 

  23. R. Kalish, Y. Lifshitz, K. Nugent, S. Prawer, Appl. Phys. Lett. 74, 2936 (1999)

    Article  ADS  Google Scholar 

  24. Y. Lifshitz, Diam. Relat. Mater. 5, 388 (1996)

    Article  ADS  Google Scholar 

  25. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  26. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Phys. Rev. Let. 62, 1290 (1989)

    Article  ADS  Google Scholar 

  27. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, W. Eickstein, Phys. Rev. B 41, 10468 (1990)

    Article  ADS  Google Scholar 

  28. K. Ostrikov, E.C. Neyts, M. Meyyappan, Adv. Phys. 62, 113 (2013)

    Article  Google Scholar 

  29. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, 2nd edn. (Cambridge University Press, Cambridge, 1953), pp. 89–99

  30. C.A. Figueroa, E. Ochoa, F. Alvarez, J. Appl. Phys. 94, 2242 (2003)

    Article  ADS  Google Scholar 

  31. B. Chapman, Glow Discharge Processes, 1st edn. (Wiley-Interscience, New York, 1980)

    Google Scholar 

  32. Y. Lifshitz, Diam. Relat. Mater. 8, 1659 (1999)

    Article  ADS  Google Scholar 

  33. M. Hakovirta, J. Salo, R. Lappalainen, A. Antilla, Phys. Lett. A 205, 287 (1995)

    Article  ADS  Google Scholar 

  34. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Phys. Rev. B 48, 4877 (1993)

    Article  ADS  Google Scholar 

  35. S. Xu, B.K. Tay, H.S. Tan, L. Zhong, Y.Q. Tu, S.R.P. Silva, W.I. Milne, J. Appl. Phys. 79, 7234 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to UCS, INCT-INES (CNPq), CAPES, and FAPERGS for financial support. FC, MEHMC, IJRB, and CAF are CNPq fellows. SMMD is FAPERGS fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Figueroa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufrène, S.M.M., Cemin, F., Soares, M.R.F. et al. Hydrogenated amorphous carbon thin films deposited by plasma-assisted chemical vapor deposition enhanced by electrostatic confinement: structure, properties, and modeling. Appl. Phys. A 117, 1217–1225 (2014). https://doi.org/10.1007/s00339-014-8510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8510-4

Keywords

Navigation