Skip to main content

Advertisement

Log in

Variation in electromagnetic radiation during plastic deformation under tension and compression of metals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents some significant variations in the intermittent electromagnetic radiation (EMR) during plastic deformation under tension and compression of some metals with selected crystal structure, viz. zinc, hexagonal closed packed (hcp), copper, face-centred cubic (fcc: stacking fault energy 0.08 J/m2), aluminium (fcc: stacking fault energy 0.2 J/m2) and 0.18 % carbon steel, body-centred cubic (bcc). The intermittent EMR signals starting near yielding are either oscillatory or exponential under both modes of deformation except a very few intermediate signals, random in nature, in zinc under compression. The number and amplitude of EMR signals exhibit marked variations under tension and compression. The smooth correlation between elastic strain energy release rate and average EMR energy release rate suggests a novel technique to determine the fracture toughness of metals. The first EMR emission amplitude and EMR energy release rate occurring near the yield increase, but maximum EMR energy burst frequency decreases almost linearly with increase in Debye temperature of the metals under tension while all EMR parameters decrease nonlinearly under compression. These results can be developed into a new technique to evaluate dislocation velocity. The EMR amplitude and energy release rate of the first EMR emission vary parabolically showing a maxima with increase in electronic heat constant of the metals under tension while they first sharply decrease and then become asymptotic during compression. However, the variation in EMR maximum energy burst frequency is apparently similar under both modes of deformation. These results strongly suggest that the mechanism of EMR emission during plastic deformation of metals involves not only the interaction of conduction electrons with the lattice periodic potential as presented in the previous theoretical models but also the interaction of conduction electrons with phonons. However, during crack propagation and fracture, charge oscillations at fractured surfaces due to breaking of atomic bonds constitute an additional factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F.R.N. Nabarro, Theory of Crystal Dislocations, 1st edn. (Clarendon Press, Oxford, 1967)

    Google Scholar 

  2. A. Misra, R.C. Prasad, V.S. Chauhan, B. Srilakshmi, Int. J. Fract. 145, 99 (2007)

    Article  MATH  Google Scholar 

  3. A. Misra, Nature (Lond.) 254, 133 (1975)

    Article  ADS  Google Scholar 

  4. A. Misra, Ninth Yearbook to the Encyclopedia of Science and Technology (EdizioniScientifiche E Tecniche, Mondadori, 1975)

    Google Scholar 

  5. A. Misra, Appl. Phys. 16, 195 (1978)

    Article  ADS  Google Scholar 

  6. A. Misra, Indian J. Pure Appl. Phys. 11, 419 (1973)

    Google Scholar 

  7. A. Misra, S. Ghosh, Indian J. Pure Appl. Phys. 18, 851 (1980)

    Google Scholar 

  8. A. Misra, S. Ghosh, Appl. Phys. 23, 387 (1981)

    Article  ADS  Google Scholar 

  9. A. Misra, A. Kumar, Int. J. Fract. 127, 387 (2004)

    Article  Google Scholar 

  10. B. Srilakshmi, A. Misra, Mater. Sci. Eng. A 404, 99 (2005)

    Article  Google Scholar 

  11. R. Kumar, A. Misra, Mater. Sci. Eng. A 454, 203 (2007)

    Article  Google Scholar 

  12. S.K. Mishra, V. Sharma, A. Misra, Int. J. Mater. Res. 105, 265 (2014)

    Article  Google Scholar 

  13. A.A. Tudik, N.P. Valuev, Sov. Tech. Phys. Lett. 6, 37 (1980)

    Google Scholar 

  14. V. Jagasivamani, K.J. Iyer, Mater. Lett. 6, 418 (1988)

    Article  Google Scholar 

  15. J.T. Dickinson, L.C. Jensen, S.K. Bhattacharya, J. Vac. Sci. Tech. 3, 1398 (1985)

    Article  ADS  Google Scholar 

  16. W. Brown, M. Schmidt, K. Calahan, The 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, MD, 2005

  17. B. Srilakshmi, A. Misra, J. Mater. Sci. 40, 6079 (2005)

    Article  ADS  Google Scholar 

  18. M.I. Molotskii, Sov. Tech. Phys. Lett. 6, 22 (1980)

    Google Scholar 

  19. A. Misra, R.C. Prasad, V.S. Chauhan, R. Kumar, Mech. Mater. 42, 505 (2010)

    Article  Google Scholar 

  20. V.S. Chauhan, A. Misra, Int. J. Mater. Res. (formerly Z. Metallkunde) 101, 857 (2010)

  21. A.A. Vorob’ev, Defektoskopiya (USSR) 13, 128 (1977)

  22. V. Frid, A. Rabinovitch, D. Bahat, Phys. Lett. A 356, 160 (2006)

    Article  MATH  ADS  Google Scholar 

  23. K. Fukui, S. Okubo, T. Terashima, Rock Mech. Rock Eng. 38, 411 (2005)

    Article  Google Scholar 

  24. A. Lavrov, Strain 41, 135 (2005)

    Article  Google Scholar 

  25. Y.I. Burak, V.F. Kondrat, O.R. Hrytsyna, Mater. Sci. 43, 449 (2007)

    Article  Google Scholar 

  26. A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, A. Agosto, Exp. Tech. 36, 53 (2012)

    Article  Google Scholar 

  27. G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, A. Agosto, Strain 47(2), 144 (2011)

    Article  Google Scholar 

  28. A. Carpinteri, F. Cardone, G. Lacidogna, Exp. Mech. 50, 1235 (2010)

    Article  Google Scholar 

  29. A. Carpinteri, G. Lacidogna, O.Borla, A. Manuello, G. Niccolini, Sadhana 37, 59 (2012)

  30. A. Widom, J. Swain, Y.N. Srivastava, J. Phys. G Nucl. Part. Phys. 40, 15006 (2013)

    Article  ADS  Google Scholar 

  31. K.F. Lee, Principles of Antenna Theory (Wiley, Chichester, 1984)

    Google Scholar 

  32. V. Jagasivamani, Ph.D. Dissertation, I.I.T. Madras, India (1987)

  33. J.P. Holman, Experimental Methods for Engineers, 4th edn. (McGraw Hill, New York, 1984)

    Google Scholar 

  34. S. Haykin, V.B. Van, Signal and Systems (Wiley, Singapore, 2002)

    Google Scholar 

  35. H. Li, Q.Q. Duan, X.W. Li, Z.F. Zhang, Mater. Sci. Eng., A 466, 38 (2007)

    Article  Google Scholar 

  36. R.A.C. Slater, Engineering Plasticity (McMillan, London, 1977)

    Google Scholar 

  37. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th edn. (Wiley, New York, 1996)

    Google Scholar 

  38. C. Kitten, Introduction to Solid State Physics, 5th edn. (Wiley, New Delhi, 1986). (sixth Wiley Eastern reprint)

    Google Scholar 

  39. A.H. Cottrell, Dislocation and Plastic Flow in Crystals (Clarendon press, Oxford, 1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Lal, S.P. & Misra, A. Variation in electromagnetic radiation during plastic deformation under tension and compression of metals. Appl. Phys. A 117, 1203–1215 (2014). https://doi.org/10.1007/s00339-014-8509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8509-x

Keywords

Navigation