Skip to main content
Log in

A physical model for the intermittent electromagnetic radiation during plastic deformation of metals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a physical model based on energy approach to explain the intermittent electromagnetic radiation during plastic deformation of metals. The model proposes that during progressive plastic deformation, edge dislocations move through a succession of locking and unlocking stages, amid the pinning barriers such as impurity atoms, dislocation network, etc. and give rise to the intermittent electromagnetic radiation. The net activation energy required for locking, unlocking and intermittent movement of edge dislocations is supplied by externally applied stress in the form of strain energy. The model has been elucidated by considering the stress–strain relationship for strain hardening. The theoretical results are validated by some fresh experiments on commercially pure aluminium and show a close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Misra, Nature (London) 254, 133 (1975)

    Article  ADS  Google Scholar 

  2. A. Misra, Ninth yearbook to the encyclopedia of science and technology (Edizioni Scientifiche E Tecniche, Mondadori, 1975)

    Google Scholar 

  3. A. Misra, Appl. Phys. 16, 195 (1978)

    Article  ADS  Google Scholar 

  4. A. Misra, S. Ghosh, Appl. Phys. 23, 387 (1981)

    Article  ADS  Google Scholar 

  5. A.A. Tudik, N.P. Valuev, Sov. Tech. Phys. Lett. 6, 37 (1980)

    Google Scholar 

  6. M.I. Molotskii, Sov. Tech. Phys. Lett. 6, 22 (1980)

    Google Scholar 

  7. J.T. Dickinson, L.C. Jensen, S.K. Bhattacharya, J. Vac. Sci. Technol. 3, 1398 (1985)

    Article  ADS  Google Scholar 

  8. V. Jagasivamani, K.J. Iyer, Mater. Lett. 6, 418 (1988)

    Article  Google Scholar 

  9. M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, A. Vollbrecht, Solid Earth 3, 401 (2012)

    Article  ADS  Google Scholar 

  10. W. Brown, M. Schmidt, K. Calahan, Electromagnetic radiation from high strain rate fracture of mild-steel, in the 14th APS Topical Conference on Shock compression of Condensed Matter (Baltimore, MD, 2005)

  11. V.S. Chauhan, A. Misra, Int. J. Mater. Res. 101, 857 (2010)

    Article  Google Scholar 

  12. A. Misra, R.C. Prasad, V.S. Chauhan, B. Srilakshmi, Int. J. Fract. 145, 99 (2007)

    Article  MATH  Google Scholar 

  13. A. Carpinteri, F. Cardone, G. Lacidogna, Exp. Mech. 50, 1235 (2010)

    Article  Google Scholar 

  14. A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, A. Agosto, Exp. Tech. 36, 53 (2012)

    Article  Google Scholar 

  15. A. Widom, J. Swain, Y.N. Srivastava, J. Phys. G: Nucl. Part. Phys. 40, 15006 (2013)

    Article  ADS  Google Scholar 

  16. A.V. Bagulya, O.D. Dalkarov, M.A. Negodaev, A.S. Rusetskii, A.P. Chubenko, Phys. Scr. 90, 074051 (2015)

    Article  ADS  Google Scholar 

  17. A. Misra, R.C. Prasad, V.S. Chauhan, R. Kumar, Mech. Mater. 42, 505 (2010)

    Article  Google Scholar 

  18. R. Singh, S.P. Lal, A. Misra, Appl. Phys. A 117, 1203 (2014)

    Article  Google Scholar 

  19. R. Singh, S.P. Lal, A. Misra, Int. J. Mater. Res. 106, 137 (2015)

    Article  Google Scholar 

  20. B. Srilakshmi, A. Misra, J. Mater. Sci. 40, 6079 (2005)

    Article  ADS  Google Scholar 

  21. A.H. Cottrell, Proc. R. Soc. A 273, 1 (1963)

    Article  ADS  Google Scholar 

  22. F.R.N. Nabarro, Theory of crystal dislocations, 1st edn. (Clarendon Press, Oxford, 1967), p. 595

    Google Scholar 

  23. U. Messerschmidt, Dislocation dynamics during plastic deformation (Springer, Heidelberg, 2010), p. 76, 172

  24. A. Couret, D. Caillard, Philos. Mag. A 59, 783 (1989)

    Article  ADS  Google Scholar 

  25. J. Friedel, Dislocations (Pergamon Press, Oxford, 1963), p. 413

    Google Scholar 

  26. A.H. Cottrell, Dislocation and plastic flow in crystals (Clarendon press, Oxford, 1953), p. 64

    Google Scholar 

  27. W.D. Callister Jr, Material science and engineering an introduction (John Wiley & Sons, Singapore, 2006), p. 166

    Google Scholar 

  28. V.S. Chauhan, A. Misra, J. Mater. Sci. 43, 5643 (2008)

    Article  ADS  Google Scholar 

  29. A. Misra, A. Kumar, Int. J. Fract. 127, 387 (2004)

    Article  Google Scholar 

  30. B. Srilakshmi, A. Misra, Mater. Sci. Eng., A 404, 99 (2005)

    Article  Google Scholar 

  31. K.F. Lee, Principles of antenna theory (Wiley, Chichester, 1984)

    Google Scholar 

  32. T.E. Mitchell, Prog. Appl. Mater. Res. 6, 119 (1964)

    Google Scholar 

  33. R.W.K. Honeycombe, The plastic deformation of metals, 2nd edn. (Edward Arnold, London, 1985), p. 91

    Google Scholar 

  34. D. Hull, D.J. Bacon, Introduction to dislocations, 4th edn. (Butterworth-Heienemann, Oxford, 2001), p. 91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Singh, R. & Lal, S.P. A physical model for the intermittent electromagnetic radiation during plastic deformation of metals. Appl. Phys. A 121, 597–605 (2015). https://doi.org/10.1007/s00339-015-9437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9437-0

Keywords

Navigation