Skip to main content

Advertisement

Log in

Performance analysis of a tunneling thermoelectric heat engine with nano-scaled quantum well

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A numerical model of a nano-scaled thermoelectric heat engine with InP/InAs/InP trilayer quantum well (QW) is investigated. The expressions of those performance parameters, such as current, power output, and efficiency are expressed. By numerical calculation, the resonant tunneling behavior of electrons in the QW is described, which seems like a very good energy selective electron mechanism for the heat engine. After considering the radiation heat leakage, for fixed layer thicknesses of the QW, the optimum working regions of the heat engine with respect to the chemical potentials and the bias voltage are obtained numerically under the economic criterion. From these results, the power output can be increased by narrowing down the layer thicknesses. In addition, owing to the radiant heat leakage, the efficiency initially increases in the working regions and then decreases when the layer thicknesses increase gradually, from which one can obtain a maximum efficiency by optimizing layer thicknesses of QW. These results calculated here may provide a guide for the optimum designs of tunneling thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.J. Goldsmid, Thermoelectric Refrigeration, vol. 1 (Plenum Press, New York, 1964)

    Book  Google Scholar 

  2. G.D. Mahan, J. Appl. Phys. 70, 4551 (1991)

    Article  ADS  Google Scholar 

  3. X. Chen, B. Lin, J. Chen, Appl. Energy 83, 681 (2006)

    Article  Google Scholar 

  4. W. He, J. Zhou, J. Hou, C. Chen, J. Ji, Appl. Energy 107, 89 (2013)

    Article  Google Scholar 

  5. F.J. Di Salvo, Science 285, 703 (1999)

    Article  Google Scholar 

  6. P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010)

    Article  Google Scholar 

  7. H. Alam, S. Ramakrishna, Nano Energy 2, 190 (2013)

    Article  Google Scholar 

  8. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  10. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard Iii, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  11. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  12. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  13. T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Phys. Rev. Lett. 89, 116801 (2002)

    Article  ADS  Google Scholar 

  14. N. Nakpathomkun, H.Q. Xu, H. Linke, Phys. Rev. B 82, 235428 (2010)

    Article  ADS  Google Scholar 

  15. H. Wang, G. Wu, Physica E 49, 25 (2013)

    Article  ADS  Google Scholar 

  16. H. Wang, G. Wu, Y. Fu, D. Chen, J. Appl. Phys. 111, 094318 (2012)

    Article  ADS  Google Scholar 

  17. F. Chi, J. Zheng, Y.S. Liu, Y. Guo, Appl. Phys. Lett. 100, 233106 (2012)

    Article  ADS  Google Scholar 

  18. S. Su, J. Guo, G. Su, J. Chen, Energy 44, 570 (2012)

    Article  Google Scholar 

  19. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010)

    Article  Google Scholar 

  20. M.F. O’Dwyer, T.E. Humphrey, R.A. Lewis, C. Zhang, J. Phys. D Appl. Phys. 39, 4153 (2006)

    Article  ADS  Google Scholar 

  21. M.F. O’Dwyer, T.E. Humphrey, R.A. Lewis, C. Zhang, J. Phys. D Appl. Phys. 42, 035417 (2009)

    Article  ADS  Google Scholar 

  22. M.F. O’Dwyer, R.A. Lewis, C. Zhang, T.E. Humphrey, Phys. Rev. B 72, 205330 (2005)

    Article  ADS  Google Scholar 

  23. X. Luo, J. He, Chin. Phys. B 20, 030509 (2011)

    Article  ADS  Google Scholar 

  24. L. Chen, Z. Ding, F. Sun, Energy 36, 4011 (2011)

    Article  Google Scholar 

  25. J.H. Davies, The physics of low dimensional semiconductors—an introduction (Cambridge University Press, Cambridge, 1998), pp. 118–146

    Google Scholar 

  26. R. Tsu, L. Esaki, Appl. Phys. Lett. 22, 562 (1973)

    Article  ADS  Google Scholar 

  27. M.O. Vassell, J. Lee, H.F. Lockwood, J. Appl. Phys. 54, 5206 (1983)

    Article  ADS  Google Scholar 

  28. M.F. O’Dwyer, T.E. Humphrey, H. Linke, Nanotechnology 17, S338 (2006)

    Article  Google Scholar 

  29. A.I. Volokitin, B.N.J. Persson, Rev. Mod. Phys. 79, 1291 (2007)

    Article  ADS  Google Scholar 

  30. X. Luo, C. Li, N. Liu, R. Li, J. He, T. Qiu, Phys. Lett. A 377, 1566 (2013)

    Article  ADS  Google Scholar 

  31. J. Guo, J. Wang, Y. Wang, J. Chen, Phys. Rev. E 87, 012133 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation (No. 11365015), Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0096), the Fundamental Research Funds for the Central Universities and Research and Innovation Project for College Graduates of Jiangsu Province (No. CXZZ13_0081), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoguang Luo or Teng Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Liu, N., He, J. et al. Performance analysis of a tunneling thermoelectric heat engine with nano-scaled quantum well. Appl. Phys. A 117, 1031–1039 (2014). https://doi.org/10.1007/s00339-014-8503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8503-3

Keywords

Navigation