Skip to main content

Equipartition of Joulean Heat in Thermoelectric Generators

  • Chapter
  • First Online:
Constructal Law and the Unifying Principle of Design

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The present article is devoted to the study of a thermoelectric generator from the perspective of a heat engine. Two important dimensionless parameters are identified to designate negligible Thomson effect; low thermal conductivity and poor electrical resistivity of a good semiconductor or semimetal. For ideal values of these parameters it has been demonstrated that the temperature maximum passes through the longitudinal center of a one-dimensional thermoelectric element while exactly half of the Joulean heat arrives at both hot and cold junction. When half the Joulean heat affects hot end and half the cold side, thermal conductance inventory (heat exchanger) is allocated equally between the high and low temperature side. The final architecture of a cascaded assembly of thermoelectric module exhibits a fractal like but deterministic (constructal) pattern that develops from the largest to the smallest scale with the fundamental construct being a T-shaped region in space. The physicists’ knowledge of equipartitioned Joulean heat and the engineers’ wisdom of equipartitioned heat exchanger allocation are unified with reference to a thermoelectric generator. The chief objective of this contribution is to draw the attention of the colleagues of cross disciplines that Bejan advocated for a possible cross fertilization of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bridgman PW. A challenge to physicists. J Appl Phys. 1942;13:209.

    Article  Google Scholar 

  2. Planck M. A survey of physical theory. Jones R, Williams DH, Trans. Dover: New York, 1993. p. 82

    Google Scholar 

  3. Truesdell C. The tragicomedy of classical thermodynamics. International Centre for Mechanical Sciences, Udine, Courses and Lectures, No. 70, Springer, New York, 1983

    Google Scholar 

  4. Hilbert D. Mathematical problems. Archive for Mathematical Physics. 1901;3:1, 44–63, 213–37

    Google Scholar 

  5. Bejan A. Engineering advances on finite-time thermodynamics. Am J Phys. 1994;62:11–2.

    Article  Google Scholar 

  6. Thomson W. Thermoelectric currents. In: Mathematical and physical papers-I. London: Cambridge University Press. 1882. p. 232–91

    Google Scholar 

  7. Bridgman PW. Thermoelectric phenomena in crystals and general electrical concepts. Phys Rev. 1928;31:221–35.

    Article  Google Scholar 

  8. Ioffe AF. The revival of thermoelectricity. Sci Am. 1958;199:31–7.

    Article  Google Scholar 

  9. Robert R Heikes, Roland W. Ure Jr. Editors, Mullin AA (Rev.). Thermoelectricity: science and engineering. Am J Phys. 1962;30:78

    Google Scholar 

  10. Pramanick AK, Das PK. Constructal design of a thermoelectric device. Int J Heat Mass Tran. 2006;49:1420–9.

    Article  MATH  Google Scholar 

  11. Gupta VK, Gauri Shander, Sarat B, Sharma NK. Experiment to verify the second law of thermodynamics using a thermoelectric device. Am J Phys. 1984;52:625–8.

    Article  Google Scholar 

  12. Gordon JM. Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration. Am J Phys. 1991;59:551–5.

    Article  Google Scholar 

  13. Yan Z, Chen J. Comment on “Generalized power versus efficiency characteristics of heat engine: the thermoelectric generator as an instructive illustration. Am J Phys. 1993;61:380.

    Article  Google Scholar 

  14. Gordon JM. A response to Yan and Chen’s “Comment on ‘Generalized power versus efficiency characteristics of heat engine: the thermoelectric generator as an instructive illustration’,”. Am J Phys. 1993;61:381.

    Article  Google Scholar 

  15. Noon JH, O’Brien BJ. Sophomore experiment in thermoelectricity. Am J Phys. 1958;26:373–5.

    Article  Google Scholar 

  16. Luke WH. Reply to experiment in thermoelectricity. Am J Phys. 1960;28:563.

    Article  Google Scholar 

  17. De Vos A, Desoete B. Equipartition principle in finite-time thermodynamics. J Non-Equil Thermody. 2000;25:1–13.

    Article  MATH  Google Scholar 

  18. Bejan A. Advanced engineering thermodynamics. New York: Wiley; 1997. p. X.

    Google Scholar 

  19. J. le R. d’ Alembert. Nouvelles experiences sur la resistance des fluides. Paris: Jambert; 1777

    Google Scholar 

  20. Truesdell C. Six lectures on modern natural philosophy. Berlin: Springer; 1966. p. 100–1.

    MATH  Google Scholar 

  21. Bejan A. Advanced engineering thermodynamics. New York: Wiley; 1997. p. XV.

    Google Scholar 

  22. Feyerabend P. Against method. London: Verso; 1978.

    Google Scholar 

  23. Harman TC, Honig JM. Thermoelectric and thermomagnetic effects and applications. New York: McGraw Hill; 1967. p. 276.

    Google Scholar 

  24. Sherman B, Heikes RR, Ure Jr RW. Calculation of efficiency of thermoelectric device. J Appl Phys. 1960;31:1–16.

    Article  Google Scholar 

  25. Gross ETB. Efficiency of thermoelectric devices. Am J Phys. 1961;29:729–31.

    Article  Google Scholar 

  26. Hatsopoulos GN, Keenan JH. Analysis of the thermoelectric effects by methods of irreversible thermodynamics. Trans ASME. 1958;80:428.

    Google Scholar 

  27. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79:1191–218.

    Article  Google Scholar 

  28. Bejan A. Models of power plants that generate minimum entropy while operating at maximum power. Am J Phys. 1996;64:1054–9.

    Article  Google Scholar 

  29. De Vos A. Efficiency of some heat engines at maximum power conditions. Am J Phys. 1985;53:570–3.

    Article  Google Scholar 

  30. Min G, Rowe DM. Thermoelectric figure-of-merit barrier at minimum lattice thermal conductivity. Appl Phys Lett. 2000;77:860–2.

    Article  Google Scholar 

  31. Bejan A. Shape and structure, from engineering to nature. UK: Cambridge University Press; 2000.

    MATH  Google Scholar 

  32. Pramanick AK. Natural philosophy of thermodynamic optimization. Doctoral thesis; Indian Institute of Technology, Kharagpur, India, 2007.

    Google Scholar 

  33. Bejan A. Theory of heat transfer-irreversible power plants–II. The optimal allocation of heat exchange equipment. Int J Heat Mass Tran. 1995;38:433–44.

    Article  Google Scholar 

  34. Bejan A. Power and refrigeration plants for minimum heat exchanger inventory. J Energ Resour Tech. 1993;115:148–50.

    Article  Google Scholar 

  35. Pramanick AK, Das PK. Assessment of Bejan’s heat exchanger allocation model under the influence of generalized thermal resistance, relaxation effect, bypass heat leak and internal irreversibility. Int J Heat Mass Tran. 2008;51:474–84.

    Article  MATH  Google Scholar 

  36. Gray A. Tubes. Basel: Birkhäuser; 2004.

    Book  Google Scholar 

  37. Hwang FK, Richards DS, Winter P. The steiner tree problem. Amsterdam: Elsevier; 1992.

    MATH  Google Scholar 

  38. Bern MW, Graham RL. The shortest network problem. Sci Am. 1989;260:84–9.

    Article  Google Scholar 

  39. Rubinstein JH, Thomas DA. A variational approach to the steiner network problem. Ann Oper Res. 1991;33:481–99.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ivanov AO, Tuzhilin AA. Branching solution to one-dimensional variational problems. Singapore: World Scientific; 2001.

    Book  Google Scholar 

  41. Bejan A. Advanced engineering thermodynamics. New York: Wiley; 1997. p. 811.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya Kumar Pramanick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pramanick, A.K. (2013). Equipartition of Joulean Heat in Thermoelectric Generators. In: Rocha, L., Lorente, S., Bejan, A. (eds) Constructal Law and the Unifying Principle of Design. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5049-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5049-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5048-1

  • Online ISBN: 978-1-4614-5049-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics