Skip to main content

Advertisement

Log in

Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrospun \(\hbox {TiO}_2\) and Ce-doped \(\hbox {TiO}_2\) nanofibers were prepared with 0.5, 2.0 and 8.0 % weight Ce. The structural properties and phase composition were characterized using high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction and X-ray absorption near edge spectroscopy (XANES) at the Ti K-edge. The undoped nanofibers are composed of an assembly of \(\hbox {TiO}_2\) nanoparticles and their crystal structure is a mixture of anatase and rutile phases with an anatase:rutile volume ratio close to 3:1. As Ce is introduced, the nanoparticles decrease in size and the rutile phase volume decreases. Ce \(\hbox {L}_3\)-edge XANES probed the local structure of Ce dopants. At 0.5 % Ce, most Ce ions are incorporated in the \(\hbox {Ce}^{3+}\) charge state but, at 2 % Ce, the majority are \(\hbox {Ce}^{4+}\). Visible light absorption indicated that \(\hbox {Ce}^{3+}\) act as shallow acceptors that only participate in absorption of wavelengths below 420 nm but \(\hbox {Ce}^{4+}\) impurity states are associated with absorption of wavelengths up to 550 nm. Photocatalytic performance of the nanofibers was assessed by measuring the degradation of adsorbed Rhodamine B in aqueous solution under visible and ultraviolet light. The 0.5 % Ce-doped \(\hbox {TiO}_2\) nanofiber showed the best visible-light photocatalytic activity, which is probably due to the majority presence of \(\hbox {Ce}^{3+}\). At higher Ce concentration, the photocatalytic reaction rate was lower than undoped nanofibers, indicating that recombination at the \(\hbox {Ce}^{4+}\) sites is rate limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahneman, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  3. S. Kityakarn, Y. Pooarporn, P. Songsiriritthigul, A. Worayingyong, S. Robl, A.M. Braund, M. Worner, Electrochim. Acta. 83, 113 (2012)

    Article  Google Scholar 

  4. A. Ranga Rao, V. Dutta, Sol. Energy Mater. Sol. Cells 91, 1075–1080 (2007)

    Article  Google Scholar 

  5. D. Li, Y. Xia, Nano Lett. 3, 555–560 (2003)

    Article  ADS  Google Scholar 

  6. B. Sun, P.G. Smirniotis, Catal. Today 88, 49–59 (2003)

    Article  Google Scholar 

  7. R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Science 299, 377 (2002)

    Article  ADS  Google Scholar 

  8. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, J. Mol. Catal. A Chem. 161, 205 (2000)

    Article  Google Scholar 

  9. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101 (2009)

    Article  ADS  Google Scholar 

  10. J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard Mater. 168, 253–261 (2009)

    Article  Google Scholar 

  11. A. Silva, C. Silva, G. Drazic, J.L. Faria, Catal. Today 144, 13 (2009)

    Article  Google Scholar 

  12. N. Yan, Z. Zhu, J. Zhang, Z. Zhao, Q. Liu, Mater. Res. Bull. 47, 1869 (2012)

    Article  Google Scholar 

  13. F.B. Li, X.Z. Li, M.F. Hou, K.W. Cheah, W.C.H. Choy, Appl. Catal. A Gen. 285, 181 (2005)

    Article  Google Scholar 

  14. Y. Takahashi, H. Sakami, M. Nomura, Anal. Chim. Acta 468, 345–354 (2002)

    Article  Google Scholar 

  15. H. Sakamoto, J. Qiu, A. Makishima, Sci. Technol. Adv. Mater. 4, 69–76 (2003)

    Article  Google Scholar 

  16. F. Zhang, P. Wang, J. Koberstein, S. Khalid, S.W. Chan, Surf. Sci. 563, 74–82 (2004)

    Article  ADS  Google Scholar 

  17. Z. Liu, B. Guo, L. Hong, H. Jiang, J. Phys. Chem. Solids 66, 161–167 (2005)

    Article  ADS  Google Scholar 

  18. J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium dioxide (CRC Press, Boca Raton, 2012), p. 189

    Google Scholar 

  19. S. Kityakarn, A. Worayingyong, A. Suramitr, M.F. Smith, Mater. Chem. Phys. 139, 543–549 (2013)

    Article  Google Scholar 

  20. K. Porkodi, S.D. Arokiamary, Mater. Charact. 58, 495–503 (2007)

    Article  Google Scholar 

  21. H. Wang, Y. Wang, Y. Yang, X. Li, C. Wang, Mater. Res. Bull. 44, 408–414 (2009)

    Article  Google Scholar 

  22. W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Mater. Sci. Eng. B 131, 147–155 (2006)

  23. H. Li, W. Zhang, B. Li, J. Am. Ceram. Soc. 93, 2503–2506 (2010)

    Article  Google Scholar 

  24. H. Li, W. Zhang, W. Pan, J. Am. Ceram. Soc. 94, 3184–3187 (2011)

    Article  Google Scholar 

  25. M.F. Smith, W. Klysubun, A. Worayingyong, S.B. Zhang, S.-H. Wei, D. Ongkaw, P. Songsiriritthigul, S. Limpijumnong, J. Appl. Phys. 105, 024308 (2009)

    Article  ADS  Google Scholar 

  26. T. Tonga, J. Zhanga, B. Tiana, F. Chena, D. Heb, M. Anpoc, J. Colloid Interface Sci. 315, 382 (2007)

    Article  Google Scholar 

  27. A. Fujimori, Phys. Rev. Lett. 53, 2518 (1984)

    Article  ADS  Google Scholar 

  28. A. Bianconi, A. Marceli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, J. Petiau, Phys. Rev. B 35, 806 (1987)

    Article  ADS  Google Scholar 

  29. E. Fonda, D. Andreatta, P.E. Colavita, G. Vlaic, J. Sych. Radiat. 6, 34 (1999)

    Article  Google Scholar 

  30. A. Worayingyong, A. Nittharach, Y. Poo-arporn, Sci. Asia 30, 341 (2004)

    Article  Google Scholar 

  31. A. Niltharach, Ph.D. dissertation, Chemistry Dept., Kasetsart Univ., Bangkok (2011)

  32. J. Xie, D. Jiang, M. Chen, D. Li, J. Zhu, X. Lu, C. Yan, Colloids Surf. A 372, 107–114 (2010)

    Article  Google Scholar 

  33. C. Su, C. Shao, Y. Liu, J Colloid Interface Sci. 359, 220–227 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports from Mahidol Wittayanusorn School and Bilateral Research Collaboration Funding from Faculty of Science, Kasetsart University. MFS was supported by Suranaree University of Technology and by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. AW would like to acknowledge the support from Kasetsart University Research and Development Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worayingyong, A., Sang-urai, S., Smith, M.F. et al. Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers. Appl. Phys. A 117, 1191–1201 (2014). https://doi.org/10.1007/s00339-014-8501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8501-5

Keywords

Navigation