Skip to main content

Improved, Photon Conversion Efficiency of (SnO2) Doped Cesium Oxide (Cs) Nanofibers for Photocatalytic Application Under Solar Irradiation

  • Conference paper
  • First Online:
3rd International Multidisciplinary Microscopy and Microanalysis Congress (InterM)

Abstract

We report the synthesis of high quality Tin Oxide (SnO2) doped Cesium Oxide (Cs) nanofibers by hydrothermal method at room temperature. Composition, structure and morphology of the nanofibers were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanoplatelets which identified peaks associated with (110), (101) and (200) planes of hexagonal wurtzite-type SnO2 with lattice constants of a = b = 3.249 Å and c = 5.219 Å. XRD results also indicated that the crystalline properties of the doped samples were improved without affecting the parent lattice. The morphological and optical properties (SnO2) doped (Cs) nanosamples were characterized by HRTEM and UV-vis spectroscopy. The IR results showed high purity of products and indicated that the nanoplatelets are made up of Sn-O2 and Cs bonds. Absorption spectra exhibited an upward shift in characteristic peaks caused by the doping material, suggesting that crystallinity of both doped compounds is improved due to specific doping level. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of SnO2/Cs nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Liu, M.: Growth of aligned square-shaped SnO2 tube arrays. Adv. Fun. Mater. 15(1), 57–62 (2005). doi:10.1002/adfm.200400001

    Article  Google Scholar 

  2. Wang, H., Rogach, A.L.: Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem. Mater. 26(1), 123–133 (2014). doi:10.1021/cm4018248

    Article  Google Scholar 

  3. Kid, T., Doi, T., Shimanoe, K.: Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chem. Mater. 22(8), 2662–2667 (2010). doi:10.1021/cm100228d

    Article  Google Scholar 

  4. Ding, L., He, S., Miao, S., Jorgensen, M.R., Leubner, S., Yan, C., Hickey, S.G., Eychmüller, A., Xu, J., Schmidt, O.G.: Ultrasmall SnO2 nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage. Sci. Rep. 4, (2014). doi:10.1038/srep04647

  5. Kravchyk, K., Protesescu, L., Bodnarchuk, M.I., Krumeich, F., Yarema, M., Walter, M., Guntlin, C.: Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 135(11), 4199–4202 (2013). doi:10.1021/ja312604r

    Article  Google Scholar 

  6. Talapin, D.V., Lee, J.S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110(1), 389–458 (2009). doi:10.1021/cr900137k

    Article  Google Scholar 

  7. Cho, K.S., Talapin, D.V., Gaschler, W., Murray, C.B.: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127(19), 7140–7147 (2005). doi:10.1021/ja050107s

    Article  Google Scholar 

  8. Talapin, D.V., Rogach, A.L., Shevchenko, E.V., Kornowski, A., Haase, M.: Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124(20), 5782–5790 (2002). doi:10.1021/ja0123599

    Article  Google Scholar 

  9. Hyeon, T.: Chemical synthesis of magnetic nanoparticles. Chem Comm. 21(8), 927–934 (2003). doi:10.1039/b207789b

    Article  Google Scholar 

  10. Talapin, D.V., Nelson, J.H., Shevchenko, E.V., Aloni, S., Sadtler, B., Alivisatos, A.P.: Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano letters 7(10), 2951–2959 (2007). doi:10.1021/nl072003g

    Article  ADS  Google Scholar 

  11. Ansari, S.G., Boroojerdian, P., Sainkar, S.R., Karekar, R.N., Aiyer, R.C., Kulkarni, S.K.: Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295(1), 271–276 (1997). doi:10.1016/S0040-6090(96)09152-3

    Article  ADS  Google Scholar 

  12. Arnold, M.S., Avouris, P., Pan, Z., Wang, Z.L.: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B. 107, 659–663 (2003). doi:10.1021/jp0271054

    Article  Google Scholar 

  13. Kaviyarasu, K., Prem Anand, D. Stanly John Xavier, S., Augustine Thomas, S., Selvakumar, S.: One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process. J. Mater. Sci. Technol. 28(1), 15–20 (2012). doi:10.1016/S1005-0302(12)60017-6

  14. Sun, S.H., Meng, G.W., Zhang, M.G., An, X.H., Wu, G.S., Zhang, L.D.: Synthesis of SnO2 nanostructures by carbothermal reduction of SnO2 powder. J. Phys. D: Appl. Phys. 37(3), 409 (2004). doi:10.1088/0022-3727/37/3/017

  15. Dai, Z.R., Pan, Z.W., Wang, Z.L.: Ultra-long single crystalline nanoribbons of tin oxide. Sol. St. Comm. 118(7), 351–354 (2001). doi:10.1016/S0038-1098(01)00122-3

    Article  ADS  Google Scholar 

  16. Yan, S.H., Ma, S.Y., Xu, X.L., Li, W.Q., Luo, J., Jin, W.X., Wang, T.T., Jiang, X.H., Lu, Y., Song, H.S.: Preparation of SnO2–ZnO hetero-nanofibers and their application in acetone sensing performance. Mat. Lett. 159(15), 447–450 (2015). doi:10.1016/j.matlet.2015.07.051

    Article  Google Scholar 

  17. Li, W., Yoon, D., Hwang, J., Chang, W., Kim, J.: One-pot route to synthesize SnO2-reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J. Pow. Sour. 293(20), 1024–1031 (2015). doi:10.1016/j.jpowsour.2015.06.025

    Article  Google Scholar 

  18. Kanjwal, M.A., Barakat, A.M., Park, S.J., Kim, H.Y.: Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure. Fib. Poly. 11(5), 700–709 (2010). doi:10.1007/s12221-010-0700-x

    Article  Google Scholar 

  19. Schrier, J., Demchenko, D.O., Wang, L.W.: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett 7(8), 2377–2382 (2007). doi:10.1021/nl071027k

    Article  ADS  Google Scholar 

  20. Arico, A.S., Cret, P., Antonucci, P.L., Cho, J., Kim, H., Antonucci, V.: Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst–electrolyte interface. Electrochimica Acta. 43(24), 3719–3729 (1998). doi:10.1016/S0013-4686(98)00130-3

    Article  Google Scholar 

  21. Wei, F., Zhang, H., Nguyen, M., Ying, M., Jiao, Z.: Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sen. Act. B: Chem. 215, 15–23 (2015). doi:10.1016/j.snb.2015.03.042

    Article  Google Scholar 

  22. Kaviyarasu, K., Manikandan, E., Kennedy, J., Jayachandran, M.: Quantum confinement and photoluminescence of well-aligned CdO nanofibers by a solvothermal route. Mat. Lett 120(1), 243–245 (2014). doi:10.1016/j.matlet.2014.01.048

    Article  Google Scholar 

  23. Weber, I.T., Valentini, A., Probst, L.F.D., Longo, E., Leit, E.R.: Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems. Sen. Actu. B 97, 31–38 (2004) doi: 10.1016/S0925-4005(03)00577-X

    Google Scholar 

  24. Wang, J., Xu, Y., Xu, W., Zhang, M., Chen, X.: Simplified preparation of SnO2 inverse opal for methanol gas sensing performance. Microp. Mesop. Mat. 208(15), 93–97 (2015). doi:10.1016/j.micromeso.2015.01.038

    Article  Google Scholar 

  25. Kaviyarasu, K., Manikandan, E., Mohamed, S.B., Kennedy, J.: One dimensional well-aligned CdO nanocrystal by solvothermal method. J. Alloy. Compd. 593(25), 67–70 (2014). doi:10.1016/j.jallcom.2014.01.071

    Article  Google Scholar 

  26. Zhang, P., Wang, L., Zhang, X., Shao, C., Hu, J., Shao, G.: SnO2-core carbon-shell composite nanotubes with enhanced photocurrent and photocatalytic performance. Appl. Catal. B: Environ. 166(167), 193–201 (2015). doi:10.1016/j.apcatb.2014.11.031

    Google Scholar 

  27. Villamagua, L., Stashans, A., Lee, P.M., Liu, Y.S., Liu, C.Y., Carini, M.: Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity. Chem. Phy. 452(1), 71–77 (2015). doi:10.1016/j.chemphys.2015.03.002

    Article  Google Scholar 

  28. Chetri, P., Choudhury, A.: Investigation of structural and magnetic properties of nanoscale Cu doped SnO2: An experimental and density functional study. J. Alloy. Compd. 627(5), 261–267 (2015). doi:10.1016/j.jallcom.2014.11.204

    Article  Google Scholar 

  29. Pavelko, R.G., Yuasa, M., Kida, T., Shimanoe, K., Yamazoe, N.: Impurity level in SnO2 materials and its impact on gas sensing properties. Sens. Actuators B: Chem. 210, 719–725 (2015). doi:10.1016/j.snb.2015.01.038

    Article  Google Scholar 

  30. Kaviyarasu,K., Sajan, D., Selvakumar, M. S., Thomas, S. A., Prem Anand, D.: A facile hydrothermal route to synthesize novel PbI2 nanorods. J. Phy. Chem. Sol. 73(11), 1396–1400 (2012). doi: 10.1016/j.jpcs.2012.06.005

    Google Scholar 

  31. Hou, L.R., Lian, L., Zhou, L., Zhang, L.H., Yuan, C.Z.: Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange. Mat. Res. Bull. 60, 1–4 (2014). doi:10.1016/j.materresbull.2014.08.006

    Article  Google Scholar 

  32. Rieu, M., Camara, M., Tournier, G., Viricelle, J.P., Pijolat, C., de Rooij, N.F., Briand, D.: Inkjet printed SnO2 gas sensor on plastic substrate. Procedia Eng. 120, 75–78 (2015). doi:10.1016/j.proeng.2015.08.569

    Article  Google Scholar 

  33. Shalan, A.E., Rasly, M., Osama, I., Rashad, M.M., Ibrahim, I.A.: Photocurrent enhancement by Ni2+ and Zn2+ ion doped in SnO2 nanoparticles in highly porous dye-sensitized solar cells. Cer. Int. 40(8), 11619–11626 (2014). doi:10.1016/j.ceramint.2014.03.152

    Article  Google Scholar 

  34. Kaviyarasu, K., Kennedy, J., Manikandan, E.: Synthesis of Mg doped TiO2 nanocrystals prepared by wet-chemical method: optical and microscopic studies. Int. J. Nanosci. 12(5), 1350033 (2013). doi:10.1142/S0219581X13500336

    Article  Google Scholar 

  35. Robina, A., German, E., Pronsato, M.E., Juan, A., Matolinova, I., Matolin, V.: Electronic structure and bonding of small Pd clusters on stoichiometric and reduced SnO2 (110) surfaces. Vacuum 106, 86–93 (2014). doi:10.1016/j.vacuum.2014.03.016

    Article  ADS  Google Scholar 

  36. Gaiduk, P.I., Chevallier, J. Prokopyev, S.L., Larsen, A.N.: Plasmonic-based SnO2 gas sensor with in-void segregated silver nanoparticles. Microelec. Eng. 125(1), 68–72 (2014). doi: 10.1016/j.mee.2013.11.005

    Google Scholar 

  37. Ziat, Y., Benyoussef, A., El Kenz, A.: Magnetic and electronic properties of Cr- and Mn-doped SnO2: ab initio calculations. J. Phy. Chem. Sol. 75(6), 701–709 (2014). doi:10.1016/j.jpcs.2014.01.018

    Article  ADS  Google Scholar 

  38. Fernandes, A., Santos, D., Pacheco, M.J., Ciríaco, L., Lopes, A.: Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. App. Cataly. B: Envir. 148(27), 288–294 (2014). doi:10.1016/j.apcatb.2013.10.060

    Article  Google Scholar 

  39. Barkade, S.S., Pinjari, D.V., Nakate, U.T., Singh, A.K., Gogate, P.R., Naik, J.B., Son, S.H.: Ultrasound assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chem. Eng. Proc: Process Intensif. 74, 115–123 (2013). doi:10.1016/j.cep.2013.09.005

    Article  Google Scholar 

  40. Kusior, A., Klich-Kafel, J., Trenczek-Zajac, A., Swierczek, K., Radecka, M., Zakrzewska, K.: TiO2–SnO2 nanomaterials for gas sensing and photocatalysis. J. Eur. Cer. Soc. 33(12), 2285–2290 (2013). doi:10.1016/j.jeurceramsoc.2013.01.022

    Article  Google Scholar 

  41. Boumeddiene, A., Bouamra, F., Rérat, M., Belkhir, H.: Structural and electronic properties of Sb-doped SnO2 (110) surface: a first principles study. App. Sur. Sci. 284(1), 581–587 (2013). doi:10.1016/j.apsusc.2013.07.137

    Article  ADS  Google Scholar 

  42. Zhou, G.X., Xiong, S.J., Wu, X.L., Liu, L.Z., Li, T.H., Chu, P.K.: N-doped SnO2 nanocrystals with green emission dependent upon mutual effects of nitrogen dopant and oxygen vacancy. Acta Materialia. 61(19), 7342–7347 (2013). doi:10.1016/j.actamat.2013.08.040

    Article  Google Scholar 

  43. Kaviyarasu, K., Magdalane, C.M., Anand, K., Manikandan, E., Maaza, M.: Synthesis and characterization studies of MgO:CuO nanocrystals by wet-chemical method. Spectrochimica Acta Part A: Mol. Biomol. Spect. 142(5), 405–409 (2015). doi: 10.1016/j.saa.2015.01.111

    Google Scholar 

  44. Kaviyarasu, K., Raja, A., Devarajan, P.A.: Structural elucidation and spectral characterizations of Co3O4 nanoflakes. Spectrochimica Acta Part A: Mol. Biomol. Spect. 11(5), 586–591 (2013). doi: 10.1016/j.saa.2013.04.126

    Google Scholar 

  45. Kaviyarasu, K., Sajan, D., Devarajan, P.A.: A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions. Appl. Nanosci. 3, 529 (2013). doi:10.1007/s13204-012-0156-y

    Article  ADS  Google Scholar 

  46. Kaviyarasu, K., Devarajan, P.A.: A versatile route to synthesize MgO nanocrystals by combustion technique. Der Pharma Chemica, 3(5), 248–254 (2011). ISSN: 0975-413X

    Google Scholar 

  47. Kaviyarasu, K., Devarajan, P.A.: Synthesis and characterization studies of cadmium doped MgO nanocrystals for optoelectronics application. Adv. Appl. Sci. Res. 2(6), 131–138 (2011). ISSN: 0976-861

    Google Scholar 

  48. Kaviyarasu, K., Devarajan, P.A.: A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant. Adv. Mat. Lett. 4(7), 582–585 (2013). doi: 10.5185/amlett.2012.10443

    Google Scholar 

  49. Kaviyarasu, K., Manikandan, E., Maaza, M.: Quantum confinement of lead titanate nanocrystals by wet chemical method. J. Alloy. Compd. 649(15), 50–53 (2015). doi:10.1016/j.jallcom.2015.07.099

    Article  Google Scholar 

  50. Kaviyarasu, K., Manikandan, E., Nuru, Z.Y., Maaza, M.: Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant. Mat. Lett. 160(1), 61–63 (2015). doi:10.1016/j.matlet.2015.07.099

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research funding from UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, Pretoria, South Africa, (Research Grant Fellowship of framework Post-Doctoral Fellowship program under contract number Research Fund: 139000). One of the authors (Dr. K. Kaviyarasu) is grateful Prof. M. Maaza, Nanosciences African network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation (NRF), Somerset West, South Africa. Support Program and the Basic Science Research Program through the National Research Foundation of South Africa for his constant support, help and encouragement generously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kaviyarasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kaviyarasu, K. et al. (2017). Improved, Photon Conversion Efficiency of (SnO2) Doped Cesium Oxide (Cs) Nanofibers for Photocatalytic Application Under Solar Irradiation. In: Oral, A., Bahsi Oral, Z. (eds) 3rd International Multidisciplinary Microscopy and Microanalysis Congress (InterM). Springer Proceedings in Physics, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-319-46601-9_14

Download citation

Publish with us

Policies and ethics