Skip to main content

Advertisement

Log in

Microwave-assisted rapid synthesis of tetragonal Cu2SnS3 nanoparticles for solar photovoltaics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, −2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm−2, 0.40, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 2008 Solar technologies market report, US Department of Energy, NREL Report no. TP-6A2-46025, DOE/GO-102010-2867, pp. 1–131 (2008)

  2. J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, Physica Status Solidi (b) 245, 1772 (2008)

    Article  ADS  Google Scholar 

  3. C. Wadia, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol. 43, 2072 (2009)

    Article  ADS  Google Scholar 

  4. T.K. Todorov, D.B. Mitzi, Eur. J. Inorg. Chem. 1, 17 (2010)

    Article  Google Scholar 

  5. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, Sol. Energy Mater. Sol. Cells 95, 1421 (2011)

    Article  Google Scholar 

  6. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovol. Res. Appl. 21, 72 (2013)

    Article  Google Scholar 

  7. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Mater. 3, 34 (2013)

    Google Scholar 

  8. Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 132(49), 17384 (2010)

    Article  Google Scholar 

  9. Y. Cao, M.S. Denny Jr., J.V. Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, H.D. Rosenfeld, K. Roy Choudhury, W. Wu, J. Am. Chem. Soc. 134, 15644 (2012)

    Article  Google Scholar 

  10. S. Siebentritt, S. Schorr, Prog. Photovolt. Res. Appl. 20, 512 (2012)

    Article  Google Scholar 

  11. A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A 29, 051203 (2011)

    Article  Google Scholar 

  12. D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Sol. Energy Mater. Sol. Cells 113, 165 (2013)

    Article  Google Scholar 

  13. T.A. Kuku, O.A. Fakolujo, Sol. Energy Mater. 16, 199 (1987)

    Article  Google Scholar 

  14. M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517, 2527 (2009)

    Article  ADS  Google Scholar 

  15. D. Avellaneda, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 157, D346 (2010)

    Article  Google Scholar 

  16. A. Amlouk, K. Boubaker, M. Amlouk, Vacuum 85, 60 (2010)

    Article  Google Scholar 

  17. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Phys. D Appl. Phys. 43, 215403 (2010)

    Article  ADS  Google Scholar 

  18. M. Adelifard, M.M.B. Mohagheghi, H. Eshghi, Phys. Scr. 85, 035603 (2012)

    Article  ADS  Google Scholar 

  19. D.M. Berg, R. Djemour, L. Guetay, G. Zoppi, S. Sienbentritt, P.J. Dale, Thin Solid Films 520, 6291 (2012)

    Article  ADS  Google Scholar 

  20. X. Chen, H. Wada, A. Sato, M. Mieno, J. Solid State Chem. 139, 144 (1998)

    Article  ADS  Google Scholar 

  21. M. Onoda, X. Chen, A. Sato, H. Wada, Mater. Res. Bull. 35, 1563 (2000)

    Article  Google Scholar 

  22. S. Fiechter, M. Martinez, G. Schimdt, W. Henrion, Y. Tomm, J. Phys. Chem. Solids 64, 1859 (2003)

    Article  ADS  Google Scholar 

  23. B. Li, Y. Xie, J. Huang, Y. Qian, J. Solid State Chem. 153, 170 (2000)

    Article  ADS  Google Scholar 

  24. C. Wu, Z. Hu, C. Wang, H. Sheng, J. Yang, Y. Xie, Appl. Phys. Lett. 91, 143104 (2007)

    Article  ADS  Google Scholar 

  25. B. Qu, M. Zhang, Y. Zeng, Y. Chen, L. Chen, Q. Li, Y. Wang, T. Wang, Nanoscale 3, 3646 (2011)

    Article  ADS  Google Scholar 

  26. X. Liang, Q. Cai, W. Xiang, Z. Chen, J. Zhong, Y. Wang, M. Shao, Z. Li, J. Mater. Sci. Technol. 29(3), 231 (2013)

    Article  Google Scholar 

  27. Q. Chen, D. Ma, Int. J. Photoenergy (2013). doi:10.1155/2013/593420

    Google Scholar 

  28. S. Bloeb, M. Jensen, Zeitschrift fuer Naturforschung 58b, 1075 (2003)

    Google Scholar 

  29. Q. Liu, Z. Zhao, Y. Lin, P. Guo, S. Li, D. Pan, X. Ji, Chem. Commun. 47, 964 (2011)

    Article  Google Scholar 

  30. J. Chang, E.R. Waclawik, Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures: insight into the universal phase selectivity mechanism. Cryst. Eng. Comm. 15, 5612 (2013)

    Article  Google Scholar 

  31. J. Lee, K. Ko, B. Park, J. Cryst. Growth 247, 119 (2003)

    Article  ADS  Google Scholar 

  32. Y. Zhai, S. Chen, J. Yang, H. Xiang, X. Gong, A. Walsh, J. Kang, S. Wei, Phys. Rev. B 84, 075213 (2011)

    Article  ADS  Google Scholar 

  33. C.O. Kappe, Chem. Soc. Rev. 37, 1127 (2008)

    Article  Google Scholar 

  34. H. Guan, H. Shen, C. Gao, X. He, J. Mater. Sci. Mater. Electron 24, 1490 (2013)

    Article  Google Scholar 

  35. D.M. Berg, Rabie Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012)

    Article  ADS  Google Scholar 

  36. Brian R. Strohmeier, Donald E. Levden, R. Scott Field, D.M. Hercules, J. Catal. 94, 514 (1985)

    Article  Google Scholar 

  37. R. Scheer, H.J. Lewerenz, J. Vac. Sci. Technol. A 12, 56 (1994)

    Article  ADS  Google Scholar 

  38. P.A. Grutsch, M.V. Zeller, T.P. Fehlner, Inorg. Chem. 12, 1431 (1976)

    Article  Google Scholar 

  39. D. Brion, Appl. Surf. Sci. 5, 133 (1980)

    Article  ADS  Google Scholar 

  40. B. Karvaly, I. Hevesi, Z. Natureforsch A 26, 245 (1971)

    ADS  Google Scholar 

  41. M. Khanafer, O. Gorochov, Mater. Res. Bull. 9, 1543 (1974)

    Article  Google Scholar 

  42. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the UGC-DAE Consortium for Scientific Research, Indore, for funding under Collaborative Research Scheme (CSR-I/CRS-49/49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, D., Chaudhuri, T.K., Shripathi, T. et al. Microwave-assisted rapid synthesis of tetragonal Cu2SnS3 nanoparticles for solar photovoltaics. Appl. Phys. A 117, 1139–1146 (2014). https://doi.org/10.1007/s00339-014-8484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8484-2

Keywords

Navigation