Skip to main content
Log in

Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In addition to inducing second-order nonlinear properties, significant structural and compositional alteration can be imparted to glass surfaces during the process of thermal poling. In this work, we focus on how thermal poling affects a structurally complex, nominally alkali-free boroaluminosilicate display glass composition. We provide evidence for electrolysis of the glass network, characterized by the migration of both cations (Ba2+, Na+) and anions (O, F) towards opposing electrode interfaces. This process results in oxidation of the positively biased electrode and forms a network-former rich, modifier-depleted glass surface layer adjacent to the anodic interface. The modified glass layer thickness is qualitatively correlated to the oxidation resistance of the electrode material, while extrinsic ions such as H+/H3O+ at not found in the depletion layer to compensate for the migration of modifier cations out of the region. Rather, FTIR spectroscopy suggests a local restructuring of the B2O3–Al2O3–SiO2 network species to accommodate the charge imbalance created by the exodus of network-modifying cations, specifically the conversion of tetrahedral B(4) to trigonal B(3) as Ba or Na ions are removed from B-related sites in the parent network. The resultant poling-induced depletion layer exhibits enhanced hydrolytic resistance under acidic conditions, and the IR spectra are substantially unlike those produced by acid leaching the same glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Dussauze et al., Thermal poling of optical glasses: mechanisms and second-order optical properties. Int. J. Appl. Glass Sci. 3(4), 309–320 (2012)

    Article  Google Scholar 

  2. S. Fleming, H. An, Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling. Front Optoelectron. China 3(1), 84–91 (2010)

    Article  Google Scholar 

  3. M. Dussauze et al., Polarization mechanisms and structural rearrangements in thermally poled sodium-alumino phosphate glasses. J. Appl. Phys. 107(4), 043505 (2010). 1-043505/6

    Article  ADS  Google Scholar 

  4. M. Dussauze et al., How does thermal poling affect the structure of soda-lime glass? J. Phys. Chem. C 114(29), 12754–12759 (2010)

    Article  Google Scholar 

  5. D. Moncke et al., Thermal poling induced structural changes in sodium borosilicate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 50(3), 229–235 (2009)

    Google Scholar 

  6. M. Dussauze et al., Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium niobium borophosphate glasses. J. Phys. Chem. C 111(39), 14560–14566 (2007)

    Article  Google Scholar 

  7. D.E. Carlson, K.W. Hang, G.F. Stockdale, Ion depletion of glass at a blocking anode: II, properties of ion-depleted glasses. J. Am. Ceram. Soc. 57(7), 295–300 (1974)

    Article  Google Scholar 

  8. D.E. Carlson, Ion depletion of glass at a blocking anode: I, theory and experimental results for alkali silicate glasses. J. Am. Ceram. Soc. 57(7), 291–294 (1974)

    Article  Google Scholar 

  9. E.C. Ziemath, V.D. Araujo, J.C.A. Escanhoela, Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass. J. Appl. Phys. 104(5), 054912–054917 (2008)

    Article  ADS  Google Scholar 

  10. K.P. Gadkaree et al., Single-crystal silicon films on glass. J. Mater. Res. 22(9), 2363–2367 (2007)

    Article  ADS  Google Scholar 

  11. K.B. Albaugh, Irreversibility of anodic bonding. Mater. Lett. 4(11–12), 465–469 (1986)

    Article  Google Scholar 

  12. D.E. Carlson, K.W. Hang, G.F. Stockdale, Electrode “polarization” in alkali-containing glasses. J. Am. Ceram. Soc. 55(7), 337–341 (1972)

    Article  Google Scholar 

  13. T. Cremoux et al., Trapped molecular and ionic species in poled borosilicate glasses: toward a rationalized description of thermal poling in glasses. J. Phys. Chem. C. 118(7), 3716–3723 (2014)

    Article  Google Scholar 

  14. Baucke, F.G.K. and J.A. Duffy, Electrolysis of a sodium borate glass: a new mechanism of oxide ion transport. Glastechnische Berichte 56(Int. Glaskongr., 13th, Band 1): 608–613 (1983)

  15. F.G.K. Baucke, J.A. Duffy, Ion migration study in a sodium borate glass: proposal of a new oxide transport. J. Electrochem. Soc. 127(10), 2230–2233 (1980)

    Article  Google Scholar 

  16. B. Schmidt et al., In situ investigation of ion drift processes in glass during anodic bonding. Sens. Actuators A 67(1–3), 191–198 (1998)

    Article  Google Scholar 

  17. A.T.J. van Helvoort et al., Anodic oxidation during electrostatic bonding. Philos. Mag. 84(6), 505–519 (2004)

    Article  ADS  Google Scholar 

  18. A.T.J. van Helvoort, K.M. Knowles, J.A. Fernie, Characterization of cation depletion in pyrex during electrostatic bonding. J. Electrochem. Soc. 150(10), G624–G629 (2003)

    Article  Google Scholar 

  19. K.B. Albaugh, D.H. Rasmussen, Rate processes during anodic bonding. J. Am. Ceram. Soc. 75(10), 2644–2648 (1992)

    Article  Google Scholar 

  20. N.J. Smith, M.T. Lanagan, C.G. Pantano, Thermal poling of alkaline earth boroaluminosilicate glasses with intrinsically high dielectric breakdown strength. J. Appl. Phys. 111(8), 083519-9 (2012)

    Article  ADS  Google Scholar 

  21. A. Ellison, I.A. Cornejo, Glass substrates for liquid crystal displays. Int. J. Appl. Glass Sci. 1(1), 87–103 (2010)

    Article  Google Scholar 

  22. N.J. Smith et al., Alkali-free glass as a high energy density dielectric material. Mater. Lett. 63(15), 1245–1248 (2009)

    Article  Google Scholar 

  23. H. Lee et al., Dielectric breakdown of thinned BaO–Al2O3–B2O3–SiO2 glass. J. Am. Ceram. Soc. 93(8), 2346–2351 (2010)

    Article  Google Scholar 

  24. P. Dash et al., Activation energy for alkaline-earth ion transport in low alkali aluminoborosilicate glasses. Appl. Phys. Lett. 102(8), 082904–082905 (2013)

    Article  ADS  Google Scholar 

  25. T. Murata et al., Electrode-limited dielectric breakdown of alkali free glass. J. Am. Ceram. Soc. 95(6), 1915–1919 (2012)

    Article  MathSciNet  Google Scholar 

  26. E. Furman, High temperature performance of coiled glass capacitors. Presented at HiTEC 2012, International Microelectronics Assembly and Packaging Society (2012)

  27. A.E. Owen, Properties of glasses in the system CaO-B2O3-Al2O3. Part. 1. The d. c conductivity and structure of calcium boroaluminate glasses. Phys. Chem. Glasses 2(3), 87–98 (1961)

    Google Scholar 

  28. S. G. Bishop, P. J. Bray, NMR studies of Ca boroaluminate glasses. Phys. Chem. Glasses 7(3) (1966)

  29. M. T. Strzelecki, The corrosion behavior of barium aluminoborosilicate glass and its relation to glass structure. thesis in MatSE p. 132 (1999)

  30. J.G. Wood et al., The effects of antimony oxide on the structure of alkaline-earth alumino borosilicate glasses. J. Non Cryst. Solids 349, 276–284 (2004)

    Article  ADS  Google Scholar 

  31. Q. Zheng et al., Composition–structure–property relationships in boroaluminosilicate glasses. J. Non Cryst. Solids 358(6–7), 993–1002 (2012)

    Article  Google Scholar 

  32. I.D. Tykachinskii et al., The coordination of boron and aluminum in some barium aluminosilicate glasses. J. Appl. Spectrosc. 13(6), 1660–1661 (1970)

    Article  ADS  Google Scholar 

  33. L.-S. Du, J.F. Stebbins, Network connectivity in aluminoborosilicate glasses: a high-resolution 11B, 27Al and 17O NMR study. J. Non Cryst. Solids 351(43–45), 3508–3520 (2005)

    Article  ADS  Google Scholar 

  34. W.J. Dell, P.J. Bray, S.Z. Xiao, 11B NMR studies and structural modeling of Na2O—B2O3—SiO2 glasses of high soda content. J. Non Cryst. Solids 58(1), 1–16 (1983)

    Article  ADS  Google Scholar 

  35. H. Yamashita et al., Nuclear magnetic resonance studies of 0.139MO (or M’2O) and #xB7; 0.673SiO2 and #xB7; (0.188-x)Al2O3 and #xB7; xB2O3 (M = Mg, Ca, Sr and Ba, M’ = Na and K) glasses. J. Non Cryst. Solids 331(1–3), 128–136 (2003)

    Article  ADS  Google Scholar 

  36. Y.D. Yiannopoulos, E.I. G. D. K. Chryssikos, Structure and properties of alkaline earth borate glasses. Phys. Chem. Glasses 42, 164–172 (2001)

    Google Scholar 

  37. S. Sen et al., Atomic-scale understanding of structural relaxation in simple and complex borosilicate glasses. Phys. Rev. B 75(9), 094203 (2007)

    Article  ADS  Google Scholar 

  38. N. Smith, C. Pantano, T. Regier, Manuscript in preparation

  39. N.J. Smith, Novel approaches to the surface modification of glass by thermal poling. Ph.D. thesis in Mater. Sci. Engr. p. 190 (2011)

  40. G.C. Smith, Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS. J. Electron Spectrosc. Relat. Phenom. 148(1), 21–28 (2005)

    Article  Google Scholar 

  41. C.W. Magee, E.M. Botnick, Hydrogen depth profiling using SIMS—problems and their solutions. J. Vac. Sci. Technol. 19(1), 47–52 (1981)

    Article  ADS  Google Scholar 

  42. M.M. Smedskjaer et al., Modifying glass surfaces via internal diffusion. J. Non Cryst. Solids 356(6–8), 290–298 (2010)

    Article  ADS  Google Scholar 

  43. G.W. Graham et al., Raman investigation of simple and complex oxides of platinum. J. Raman Spectrosc. 22(1), 1–9 (1991)

    Article  ADS  Google Scholar 

  44. S. Illievski et al., Practical IR extinction coefficients for water in commercial glasses determined by nuclear reaction analysis. Glass Sci. Technol. 73(2), 39–45 (2000)

    Google Scholar 

  45. P. McMillan, B. Piriou, The structures and vibrational spectra of crystals and glasses in the silica-alumina system. J. Non Cryst. Solids 53(3), 279–298 (1982)

    Article  ADS  Google Scholar 

  46. B.O. Mysen, P. Richet, Silicate glasses and melts: properties and structure, 1st edn., Developments in geochemistry (Elsevier, Boston, 2005), p. 544

    Google Scholar 

  47. F. Geotti-Bianchini et al., New interpretation of the IR reflectance spectra of silica-rich films on soda-lime glass. Glastechnische Berichte 64(8), 205–217 (1991)

    Google Scholar 

  48. S.A. MacDonald et al., Dispersion analysis of FTIR reflection measurements in silicate glasses. J. Non Cryst. Solids 275(1–2), 72–82 (2000)

    Article  ADS  Google Scholar 

  49. E.I. Kamitsos, G.D. Chryssikos, M.A. Karakassides, New insights into the structure of alkali borate glasses. J. Non Cryst. Solids 123(1–3), 283–285 (1990)

    Article  ADS  Google Scholar 

  50. K. El-Egili, Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 glasses. Phys. B 325, 340–348 (2003)

    Article  ADS  Google Scholar 

  51. I. Polyakova et al., Application of the constant stoichiometry grouping concept to the Raman spectra of BaOAl2O3B2O3 glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 51, 52–58 (2010)

    Google Scholar 

  52. U.K. Krieger, W.A. Lanford, Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental. J. Non Cryst. Solids 102(1–3), 50–61 (1988)

    Article  ADS  Google Scholar 

  53. R.A Schaut, The effect of boron oxide on the composition, structure, and adsorptivity of glass surfaces. Ph.D. thesis in MatSE (2008)

  54. M.E. Fleet, S. Muthupari, Boron K-edge XANES of borate and borosilicate minerals. Am. Mineral. 85(7–8), 1009–1021 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge The Office of Naval Research under Grant N00014-05-1-0541 and the Penn State Materials Research Institute for partial funding of this work. The authors also thank Vince Bojan and Josh Stapleton (Penn State University) for their help and guidance regarding materials analysis throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo G. Pantano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, N.J., Pantano, C.G. Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling. Appl. Phys. A 116, 529–543 (2014). https://doi.org/10.1007/s00339-014-8467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8467-3

Keywords

Navigation