Skip to main content
Log in

Borosilicate glass nanolayer as a spin-on dopant source: FTIR and spectroscopic ellipsometry investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Borosilicate glass is a potential dopant source for producing shallow boron junctions by the use of proximity rapid thermal diffusion. Interest in this technique has increased recently due to its application to the manufacture of solar cells. A borosilicate gel is spun onto a silicon wafer and the layer is rapidly thermally annealed to convert it to a borosilicate glass (BSG). Fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry and sheet-resistance measurements have been used to understand and subsequently optimise the conversion of the gel to a BSG nanolayer. Physical properties of the thin, spun-on layer, such as thickness, refractive index and porosity, were monitored. The optimum conversion step involved rapid thermal annealing for 45 s at 900 °C. This avoided any boron loss from the BSG layer during the thermal processing step. The position of the B–O stretching vibration around 1370 cm−1 was found to be sensitive to boron outdiffusion and it is suggested that FTIR spectroscopy provides a simple method for monitoring the outdiffusion of boron from the spin-on dopant nanolayer. Further FTIR studies using p-polarised light at oblique incidence revealed, for the first time, the LO–TO phonon splitting of the B–O stretching vibration band in the glassy layer. Investigation of the stability of BSG layers over long periods showed that unstabilised (or undensified) BSG films demonstrate a dramatic loss of boron over 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Ilyas, C.A. Hogarth, The optical absorption edge of amorphous thin films of borosilicate glass. J. Mater. Sci. Lett. 2, 535–537 (1983)

    Article  Google Scholar 

  2. G. Sanchez, J.L. Castano, J. Garrido, J. Martinez, J. Piqueras, Direct writing laser doping from spun-on glasses. J. Electrochem. Soc. 138, 3039–3042 (1991)

    Article  Google Scholar 

  3. C.D. Bagratishvili, R.B. Dzhanelidze, D.A. Jishiashvili, L.V. Piskanovskii, Z.N. Shiolashvili, Boron diffusion from a reactively sputtered glass source in Si and SiO2. Phys. Stat. Sol. (a) 56, 27–35 (1979)

    Article  Google Scholar 

  4. M. Miyake, Diffusion of boron into silicon from borosilicate glass using rapid thermal processing. J. Electrochem. Soc. 138, 3031–3039 (1991)

    Article  Google Scholar 

  5. D.J. Taylor, D.Z. Dent, D.N. Braski, B.D. Fabes, Boron loss in furnace- and laser-fired, sol–gel derived borosilicate glass films. J. Mater. Res. 11, 1870–1873 (1996)

    Article  Google Scholar 

  6. M. Nogami, Y. Moriya, Glass formation of the SiO2–B2O3 system by the gel process from metal alkoxides. J. Non-Cryst. Solids 48, 359–366 (1982)

    Article  Google Scholar 

  7. A.D. Irwin, J.S. Holmgren, T.W. Zerda, J. Jonas, Spectroscopic investigations of borosiloxane bond formation in the sol–gel process. J. Non-Cryst. Solids 89, 191–205 (1987)

    Article  Google Scholar 

  8. B. D. Fabes, B. J. J. Zelinski, D. R. Uhlmann, in Ceramic Films and Coatings, ed. by J. B. Watchman, R. A. Haber (Noyes, 1992)

  9. W. Zagozdzon-Wosik, J.C. Wolfe, C.W. Teng, Doping of trench capacitors by rapid thermal diffusion. IEEE Electron. Dev. Lett. 12, 264–266 (1991)

    Article  Google Scholar 

  10. M. Nolan, T. Perova, R.A. Moore, H.S. Gamble, Boron diffusion from a spin-on source during rapid thermal processing. J. Non-Cryst. Solids 254, 89–93 (1999)

    Article  Google Scholar 

  11. J.Y. Lee, S.H. Lee, Boron back surface field using spin-on dopants by rapid thermal processing. J. Korean Phys. Soc. 44, 1581–1586 (2004)

    Google Scholar 

  12. J. Jourdan, Y. Veschetti, S. Dubois, T. Desrues, R. Monna, Formation of boron-doped region using spin-on dopant investigation on the impact of metallic impurities. Prog. Photovolt. Res. Appl. 16, 379–387 (2008)

    Article  Google Scholar 

  13. S. Barth, O. Doll, I. Koehler, K. Neckermann, M. Blech, A. Lawerenz, A. Edler, R. Kopecek, J.J. Schneider, 19.4 Efficient bifacial solar cell with spin-on boron diffusion. Energy Procedia 38, 410–415 (2013)

    Article  Google Scholar 

  14. A. Yadav, G. Singh, R. Nekovei, R. Jeyakumar, c-Si solar cells formed from spin-on phosphoric acid and boric acid. Renew. Energy 80, 80–84 (2015)

    Article  Google Scholar 

  15. M. Nolan, T.S. Perova, A.R. Moore, C. Beitia, J. McGilp, H. Gamble, Spectroscopic investigations of borosilicate glass and its application as a dopant source for shallow junctions. J. Electrochem. Soc. 147, 3100–3105 (2000)

    Article  Google Scholar 

  16. W. Zagozdzon-Wosik, P. Grabiec, G. Lux, Silicon doping from phosphorus spin-on dopant sources in proximity rapid thermal diffusion. J. Appl. Phys. 75, 337–344 (1994)

    Article  Google Scholar 

  17. P. Grabiec, W. Zagozdzon-Wosik, G. Lux, Kinetics of phosphorous proximity rapid thermal diffusion using spin-on Dopant source for shallow junction fabrication. J. Appl. Phys. 78, 204–211 (1995)

    Article  Google Scholar 

  18. R.M. Almeida, C.G. Pantano, Structural Investigation of silica gel films by infrared spectroscopy. J. Appl. Phys. 68, 4225–4232 (1990)

    Article  Google Scholar 

  19. L. Ventura, B. Hartiti, A. Slaoui, J.-C. Muller, P. Siffert, Rapid thermal annealing of spin-on glass films. Mater. Res. Soc. Symp. Proc. 284, 197 (1993)

    Article  Google Scholar 

  20. A. Slaoui, L. Ventura, A. Lachig, R. Monna, J.C. Muller, Rapid isothermal annealing of doped and undoped spin-on glass. Mater. Res. Soc. Symp. Proc. 387, 365 (1995)

    Article  Google Scholar 

  21. D.M. Haaland, C.J. Brinker, In situ FT-IR studies of oxide and oxynitride sol–gel-derived thin films. Mater. Res. Soc. Symp. Proc. 32, 267 (1984)

    Article  Google Scholar 

  22. M. Rastogi, W. Zagozdzon-Wosik, F. Romero-Borja, J.M. Haddleson, R. Beavers, P. Grabliec, L.T. Wood, Boron doping using proximity rapid thermal diffusion from spin-on-dopants. Mater. Res. Soc. Symp. Proc. 342, 369 (1994)

    Article  Google Scholar 

  23. W. Kern, RCA Rev. 32, 429 (1971)

    Google Scholar 

  24. J. Wong, A review of infrared spectroscopic studies of vapour-deposited dielectric glass films on silicon. J. Electron. Mater. 5, 113–160 (1976)

    Article  Google Scholar 

  25. W. A. Pliskin, in Semiconductor Silicon, ed. by H. R. Huff and R. R. Burgess (Electrochemical Society, Pennington, 1973) p. 506

  26. A.S. Tenney, Nondestructive determination of the composition and thickness of thin films of pyrolytically deposited borosilicate glass by infrared absorption. J. Electrochem. Soc. 118, 1658–1661 (1971)

    Article  Google Scholar 

  27. E.A. Taft, Infrared absorption of chemical vapor deposited borosilicate glass films. J. Electrochem. Soc. 118, 1985–1988 (1971)

    Article  Google Scholar 

  28. A.S. Tenney, J. Wong, Vibrational spectra of vapor-deposited binary borosilicate glasses. J. Chem. Phys. 56, 5516 (1972)

    Article  Google Scholar 

  29. W. Kern, G.L. Schnabel, RCA Rev. 43, 423 (1982)

    Google Scholar 

  30. W. Kern, W.A. Kurylo, C.J. Tino, Optimized chemical vapor deposition of borophosphosilicate glass films. RCA Rev. 46, 117–152 (1985)

    Google Scholar 

  31. F.S. Becker, D. Pawlik, H. Shäfer, G. Staudigl, Process and film characterization of low pressure tetraethylorthosilicate–borophosphosilicate glass. J. Vac. Sci. Technol. B4, 732–745 (1986)

    Article  Google Scholar 

  32. J.E. Franke, T.M. Niemczyk, D. Haaland, Infrared spectroscopic techniques for quantitative characterization of dielectric thin films on silicon wafers. Spectrochim. Acta 50A, 1687–1723 (1994)

    Article  Google Scholar 

  33. R.A. Carpio, J. Taylor, Advanced optical characterization techniques for borosilicate films. Proc. SPIE 2638, 38–45 (1998)

    Article  Google Scholar 

  34. T.W. Dyer, Moisture instability of borophosphosilicate glass and the effect of thermal treatment. J. Electrochem. Soc. 145, 3950–3956 (1998)

    Article  Google Scholar 

  35. S. Rojas, R. Comarasca, L. Zanotti, A. Borghesi, S. Sassella, G. Ottaviani, L. Moro, P. Lazzeri, Properties of borophosphosilicate glass films deposited by different chemical vapor deposition techniques. J. Vac. Sci. Technol. B10, 633–642 (1992)

    Article  Google Scholar 

  36. L.D. Madsen, A.C. de Wilton, J.S. Mercier, Examination of the stability of borophosphosilicate glass films. Chemtronics 5, 35–42 (1991)

    Google Scholar 

  37. D.M. Haaland, Quantitative infrared analysis of borophosphosilicate films using multivariate statistical methods. Anal. Chem. 60, 1208–1217 (1988)

    Article  Google Scholar 

  38. I. Susuki, M. Ejima, K. Watanabe, Y. Xiong, T. Saitoh, Thin Solid Films 313–314, 214 (1998)

    Article  Google Scholar 

  39. B. Drevillon, Spectroscopic ellipsometry in the infrared range. Thin Solid Films 313–314, 625–630 (1998)

    Article  Google Scholar 

  40. S. Bruynooghe, F. Bertin, A. Chabli, J.-C. Blanchard, M. Couchaud, Infrared spectroscopic ellipsometry for residual water detection in annealed sol–gel thin layers. Thin Solid Films 313–314, 722–726 (1998)

    Article  Google Scholar 

  41. M.A. Villegas, J.M. Fernández Navarro, Characterization of B2O3–SiO2 glasses prepared via sol-gels. J. Mater. Sci. 23, 2464–2478 (1988)

    Article  Google Scholar 

  42. A.M. Efimov, Quantitative IR spectroscopy: applications to studying glass structure and properties. J. Non-Cryst. Solids 203, 1–11 (1996)

    Article  Google Scholar 

  43. P. Broadhead, G.A. Newman, The vibrational spectra of orthoboric acid and its thermal decomposition products. J. Mol. Struct. 10, 157–172 (1971)

    Article  Google Scholar 

  44. A.M. Efimov, Water related bands in the IR absorption spectra of silicate glasses. J. Non-Cryst. Solids 332, 93–114 (2003)

    Article  Google Scholar 

  45. C. Gautan, Synthesis, structural and optical investigation of (Pb, Bi)TiO3 borosilicate glasses. Phys. Res. Intern., 2014, 1–7(2014). Article ID 606709

  46. G. Lucovsky, M.J. Manitini, J.K. Srivastava, E.A. Irene, Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy. J. Vac. Sci. Technol. B5, 530–537 (1987)

    Article  Google Scholar 

  47. A. Lehmann, L. Schumann, K. Hubner, Optical phonons in amorphous silicon oxides. II. Calculation of phonon spectra and interpretation of the IR transmission of SiO x . Phys. Stat. Solidi B121, 505–511 (1984)

    Article  Google Scholar 

  48. C. Martinet, R.A.B. Devine, Analysis of the vibrational mode spectra of amorphous SiO2 films. J. Appl. Phys. 77, 4343–4348 (1995)

    Article  Google Scholar 

  49. A.C. Angood, J.L. Koenig, Effect of nonrandom polymer chain orientation in the thickness direction on infrared absorption measurements. Macromolecules 2, 37–41 (1969)

    Article  Google Scholar 

  50. F.L. Galeener, A.J. Leadbetter, M.W. Stringfellow, Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous Si02, GeO2, and BeF2. Phys. Rev. B 27, 1052–1078 (1983)

    Article  Google Scholar 

  51. S.W. de Leeuw, M.F. Thorpe, Coulomb splittings in glasses. Phys. Rev. Lett. 55, 2879–2882 (1985)

    Article  Google Scholar 

  52. F.L. Galeener, G. Lukovsky, Longitudinal optical vibrations in glasses: GeO2 and SiO2. Phys. Rev. Lett. 37, 1476–1478 (1976)

    Article  Google Scholar 

  53. D.W. Berreman, Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys. Rev. 130, 2193–2198 (1963)

    Article  Google Scholar 

  54. K. Hubner, L. Schumann, A. Lehmann, H.H. Vajen, G. Zuther, Detection of LO and TO phonons in amorphous SiO2 films by oblique incidence of IR light. Phys. Stat. Solidi B104, K1–K5 (1981)

    Article  Google Scholar 

  55. J.E. Olsen, F. Shimura, Infrared reflection spectroscopy of the SiO2-silicon interface. J. Appl. Phys. 66, 1353–1358 (1989)

    Article  Google Scholar 

  56. R.M. Almeida, Detection of LO modes in glass by infrared reflection spectroscopy at oblique incidence. Phys. Rev. B 45, 161–170 (1992)

    Article  Google Scholar 

  57. I.I. Shaganov, T.S. Perova, A.R. Moore, K. Berwick, Spectroscopic characterisation of SiO and SiO2 solid films assignment and local field influence. J. Mater. Sci. Mater. Electron. 12, 351–355 (2001)

    Article  Google Scholar 

  58. R.A.B. Devine, Structural nature of the Si/SiO2 interface through infrared spectroscopy. Appl. Phys. Lett. 68, 3108–3110 (1996)

    Article  Google Scholar 

  59. G. Xiong, G. Lan, H. Wang, C. Huang, Infrared reflectance and Raman spectra of lithium triborate single crystal. J. Raman Spectrosc. 24, 785–789 (1993)

    Article  Google Scholar 

  60. A.F. Perveev, G.A. Muranova, V.M. Zolotarev, Sov. Solid State Phys. 14, 2510 (1972)

    Google Scholar 

  61. I.I. Shaganov, Manifestation of local field effects in the properties of optical materials and coatings. Sov. J. Opt. Technol. 59, 1–11 (1992)

    Google Scholar 

  62. R.M. Levin, Water absorption and densification of phosphosilicate glass films. J. Electrochem. Soc. 129, 1765–1770 (1982)

    Article  Google Scholar 

  63. T.S. Izumitani, Optical glass (American Institute of Physics, New York, 1986), p. 17

    Google Scholar 

Download references

Acknowledgments

The Authors would also like to thank C. Beitia for ellipsometry results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Perova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perova, T.S., Nolan-Jones, M., McGilp, J. et al. Borosilicate glass nanolayer as a spin-on dopant source: FTIR and spectroscopic ellipsometry investigations. J Mater Sci: Mater Electron 27, 6292–6304 (2016). https://doi.org/10.1007/s10854-016-4561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4561-y

Keywords

Navigation