Skip to main content
Log in

Plasmonics properties of trimetallic Al@Al2O3@Ag@Au and Al@Al2O3@AuAg nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric–metal–metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core–shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core–shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core–shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core–shell or Al@Al2O3@AgAu alloy. The formation of core–shell and alloy nanostructure was confirmed by UV–visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400–520 nm with increasing ablation time suggesting formation of Ag–Au alloy in the presence of alumina particles in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, Y. Fang, Plasmonics 7, 509 (2012)

    Article  Google Scholar 

  2. J. Zhu, J.-J. Li, L. Yuan, J.-W. Zhao, J. Phys. Chem. C 116, 11734 (2012)

    Article  Google Scholar 

  3. D.J. Wu, X.D. Xu, X.J. Liu, J. Chem. Phys. 129, 074711 (2008)

    ADS  Google Scholar 

  4. J. Zhu, J.-J. Li, L. Yuan, J.-W. Zhao, Plasmonics 6, 527 (2011)

    Article  Google Scholar 

  5. R. Bardhan, S. Mukherjee, N.A. Mirin, S.D. Levit, P. Nordlander, N.J. Halas, J. Phys. Chem. C 114, 7378 (2010)

    Article  Google Scholar 

  6. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    ADS  Google Scholar 

  7. X.-B. Xu, Z. Yi, Xi-BO Li, Y.-Y. Wang, X. Geng, J.-S. Luo, B.-C. Luo, Y.-G. Yi, Y.-J. Tang, J. Phys. Chem. C 116, 24046 (2012)

    Google Scholar 

  8. D.J. Wu, X.D. Xu, X.J. Liu, Solid State Commun. 146, 7 (2008)

    ADS  Google Scholar 

  9. D.J. Wu, X.J. Liu, Appl. Phys. B 97, 193 (2009)

    ADS  Google Scholar 

  10. E. Prodan, P. Nordlander, J. Chem. Phys. 120, 5444 (2004)

    ADS  Google Scholar 

  11. E. Prodan, A. Lee, P. Nordlander, Chem. Phys. Lett. 360, 325 (2002)

    ADS  Google Scholar 

  12. S.Z. Mortazavi, P.P.A. Reyhani, A.N. Golikand, S. Mirershadi, J. Phys. Chem. C 115, 5049 (2011)

    Google Scholar 

  13. K.K. Kim, D. Kim, S.K. Kim, S.M. Park, J.K. Song, Chem. Phys. Lett. 511, 116 (2011)

    ADS  Google Scholar 

  14. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z.S. Warkocka, N. Koshizaki, Angew. Chem. Int. Ed. 49, 6361 (2010)

    Google Scholar 

  15. K.J. Major, C. De, S.O. Obare, Plasmonics 4, 61 (2009)

    Google Scholar 

  16. R. Mahfouz, F.J.C. Santos Aires, A. Brenier, E. Ehret, M. Roumie, B. Nsouli, B. Jacquier, J.C. Bertolini, J. Nanopart. Res. 12, 3123 (2010)

    Google Scholar 

  17. S.-H. Tsai, Y.-H. Liu, P.-L. Wu, C.-S. Yeh, J. Mater. Chem. 13, 978 (2003)

    Google Scholar 

  18. L. Wang, Y. Yamauchi, J. Am. Chem. Soc. 132, 13636 (2010)

    Google Scholar 

  19. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Google Scholar 

  20. S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. B 103, 3529 (1999)

    Google Scholar 

  21. V.R. Tapia, A. Franco, J.G. Macedo, J. Nanopart. Res. 14, 915 (2012)

    Google Scholar 

  22. L. Wu, J. Zhang, W. Watanabe, Adv. Drug Deliv. Rev. 63, 63 (2011)

    Google Scholar 

  23. K.A. Elsayed, H. Imam, M.A. Ahmed, R. Ramadan, Opt. Laser Technol. 45, 495 (2013)

    ADS  Google Scholar 

  24. S. Inasawa, M. Sugiyama, Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005)

    Google Scholar 

  25. J.S. Sekhon, S.S. Verma, Plasmonics 7, 453 (2012)

    Google Scholar 

  26. M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prevel, M. Treilleux, P. Melinon, Phys. Rev. B 64, 085407 (2001)

    ADS  Google Scholar 

  27. W. Wu, P.N. Njoki, H. Han, H. Zhao, E.A. Schiff, P.S. Lutz, L. Solomon, S. Matthews, M.M. Maye, J. Phys. Chem. C 115, 9933 (2011)

    Google Scholar 

  28. J. Hu, L. Chen, Z. Lian, M. Cao, H. Li, W. Sun, N. Tong, H. Zeng, J. Phys. Chem. C 116, 11584 (2012)

    Google Scholar 

  29. V. Abdelsayed, G. Glaspell, M. Nguyen, J.M. Howe, M.S. El-Shall, Faraday Discuss. 138, 163 (2008)

    ADS  Google Scholar 

  30. J.H. Hodak, A. Henglein, M. Giersig, G.V. Hartland, J. Phys. Chem. B 104, 11708 (2000)

    Google Scholar 

  31. T. Shibata, B.A. Bunker, Z. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, J. Am. Chem. Soc. 124, 11989 (2002)

    Google Scholar 

  32. S. Mohan, G. Jose, Appl. Phys. Lett. 91, 253107 (2007)

    ADS  Google Scholar 

  33. M.B. Cortie, A.M. McDonagh, Chem. Rev. 111, 3713 (2011)

    Google Scholar 

  34. Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, J. Phys. Chem. B 110, 2549 (2006)

    Google Scholar 

  35. G. Compagnini, E. Messina, O. Puglisi, R.S. Cataliotti, V. Nicolosi, Chem. Phys. Lett. 457, 386 (2008)

    ADS  Google Scholar 

  36. R. Singh, R.K. Soni, J. Nanosci. Lett. 3, 11 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Soni, R.K. Plasmonics properties of trimetallic Al@Al2O3@Ag@Au and Al@Al2O3@AuAg nanostructures. Appl. Phys. A 116, 955–967 (2014). https://doi.org/10.1007/s00339-014-8455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8455-7

Keywords

Navigation