Skip to main content
Log in

fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High refractory pressure-less sintered ternary composite ceramics of AlN-SiC-MoSi2 (ASMY), polished by mechanical grinding to a surface roughness R a ~40 nm, have been treated in vacuum by fs Ti:sapphire laser, operating at 800 nm wavelength, 100 fs pulse duration, and increasing fluence, to generate a “black ceramic material”, able to minimize solar radiation reflectance, in such a way that they could be used as the absorber material in an innovative conversion module of solar radiation into electrical energy. Disk specimens of approximately 3 cm in diameter and 3 mm thick have been treated by normal incident laser beam, generating a scanning pattern of parallel lines, at a lateral distance of about 80 μm, using a stage in motion, in the x, y, z directions, driven by a computer. The experimental conditions of laser treatment (energy fluence, speed of transition and lateral distance of steps) have been optimized to maximize the absorption properties of the patterned surface. In some samples this value was increased by about 15 %, compared to untreated surface, up to a value of final absorbance of about 95 %, all over the range of solar radiation spectrum (from UV to NIR). The morphological and chemical effects have been evaluated by SEM–EDS analysis. At higher fluence, we obtained the characteristic ablation craters and corresponding local material decomposition, while at lower fluence (over the ablation threshold) an ordered periodic nano-structure has been obtained, exploitable for its high capacity of entrapment of visible light. The laser treated ceramic specimen, characterized by very high absorption properties and reflectivity values lower than 4 %, has been used as active absorber material in a conversion module, installed in a solar test platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Root mean squared \( R_{\rm q} = \sqrt{\frac{1}{n} \sum\nolimits_{i = 1}^{n} y_i^2} \), arithmetic average of absolute values \( R_{\rm a} = \frac{1}{n}\sum\nolimits_{i = 1}^{n} {|y_{i} |} \), peak-valley distance \( \begin{aligned} R_{\rm t} = R_{\rm p} - R_{\rm v},\quad {\rm where}\; &R_{\rm p} = \text{peak value} \\ &R_{\rm v} = {\rm valley}\,\,{\rm value} \end{aligned} \).

References

  1. International Renewable Energy Agency (IRENA), Technologies, cost analysis, concentrating solar power. Power Sect. 1(2/5), (2012)

  2. C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials, Technical Report No. NREL/TP-520-31267, National Renewable Energy Laboratory, Golden, CO

  3. E. Sani, L. Mercatelli, P. Sansoni, L. Silvestroni, D. Sciti, J. Renew. Sustain. Energy 4, 033104 (2012)

    Article  Google Scholar 

  4. D. Ginley, M.A. Green, R. Collins, MRS Bull. 33, 355–364 (2008)

    Article  Google Scholar 

  5. S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen, Mater. Sci. Eng. Rep. 69(1–3), 1–35 (2010)

    Article  Google Scholar 

  6. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, App. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  7. A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 257, 7291–7294 (2011)

    Article  ADS  Google Scholar 

  8. A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 3, 385–407 (2013)

    Article  Google Scholar 

  9. A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes, App. Phys. Lett. 74, 2322 (1999)

    Article  ADS  Google Scholar 

  10. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, S. Martinuzzi, Thin Solid Films 516, 6791 (2008)

    Article  ADS  Google Scholar 

  11. B.K. Nayak, V.V. Iyengar, M.C. Gupta, Prog. Photovolt Res. Appl. 19, 631–639 (2011)

    Article  Google Scholar 

  12. M.D. Shirk, P.A. Molian, J. Laser Appl. 10, 18 (1998)

    Article  ADS  Google Scholar 

  13. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, E.E.B. Campbell, Appl. Surf. Sci. 120, 65–80 (1997)

    Article  ADS  Google Scholar 

  14. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Appl. Phys. Lett. 82, 1703–1705 (2003)

    Article  ADS  Google Scholar 

  15. P. Rudolph, W. Kautek, Thin Solid Films 453–454, 537–541 (2004)

    Article  Google Scholar 

  16. N. Yasumaru, K. Miyazaki, K. Kiuchi, Appl. Phys. A Mater. Sci. Process. 81, 933–937 (2005)

    Article  ADS  Google Scholar 

  17. T. Tomita, K. Kinoshita, S. Matsuo, S. Hashimoto, Appl. Phys. Lett. 90, 153115 (2007)

    Article  ADS  Google Scholar 

  18. R. Wagner, J. Gottmann, A. Horn, E.W. Kreutz, Appl. Surf. Sci. 252, 8576–8579 (2006)

    Article  ADS  Google Scholar 

  19. J. Gottmann, D. Wortmann, M. Horstmann-Jungemann, Appl. Surf. Sci. 255, 5641–5646 (2009)

    Article  ADS  Google Scholar 

  20. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  21. R. Wagner, J. Gottmann, J. Phys: Conf. Ser. 59, 333–337 (2007)

    ADS  Google Scholar 

  22. S.H. Kim, Ik-Bu Sohn, S. Jeong, Appl. Phys. A 102, 55–59 (2011)

    Article  ADS  Google Scholar 

  23. S.H. Kim, Ik-Bu Sohn, S. Jeong, Appl. Phys. A 103, 1053–1057 (2011)

    Article  ADS  Google Scholar 

  24. D. Sciti, S. Guicciardi, C. Melandri, A. Bellosi, J. Am. Ceram. Soc. 86(10), 1720–1726 (2003)

    Article  Google Scholar 

  25. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  26. H.M. van Driel, J.E. Sipe, J.E. Young, Phys. Rev. Lett. 49, 1955–1959 (1982)

    Article  ADS  Google Scholar 

  27. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27(2), 1141 (1983)

    Article  ADS  Google Scholar 

  28. W. Kautek, P. Rudolph, G. Daminelli, J. Kruger, Appl. Phys. A 81, 65–70 (2005)

    Article  ADS  Google Scholar 

  29. T. Tomita, R. Kumai, S. Matsuo, S. Hashimoto, M. Yamaguchi, Appl. Phys. A 97, 271–276 (2009)

    Article  ADS  Google Scholar 

  30. E. Cappelli, S. Orlando, D. Sciti, D.M. Trucchi, Patent RM2012A000427 3 Sept 2012

Download references

Acknowledgments

The authors would like to thank the European Community for the financial support of the European Project E2PHEST2US “Enhanced Energy Production of Heat and Electricity by a combined Solar Thermionic-Thermoelectric Unit System”—GA 241270 in the framework of the Seventh Framework Program, topic “Energy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cappelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappelli, E., Orlando, S., Sciti, D. et al. fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance. Appl. Phys. A 117, 243–251 (2014). https://doi.org/10.1007/s00339-014-8446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8446-8

Keywords

Navigation